Rick Hoffman and Associates
1149 Palomino Road, Santa Barbara, CA 93105
TELEPHONE (805) 569-1911
EMAIL: rickhoffman1@cox.net

ENGINEERING GEOLOGISTS & HYDROGEOLOGISTS
GROUNDWATER EXPLORATION and ANALYSIS
RG #3740 EG #1135 HG #448

WATER WELL COMPLETION REPORT

Fire Station #51 Test Well 749 Burton Mesa Boulevard Lompoc, California

October 4, 2018

TABLE OF CONTENTS

Water Well Completion Report Fire Station #51 Test Well

1.	INTRODUCTION	. 1
2.	WELL SITING & GEOLOGIC/HYDROLOGIC SUMMARY	. 2
3.	TEST HOLE DRILLING	. 3
4.	WELL COMPLETION AND DEVELOPMENT	. 4
5.	PRELIMINARY TESTING (May 30-June 1, 2017)	. 5
	5.1. STEP DRAWDOWN TEST (May 30, 2017)	. 5
	5.2. CONSTANT DISCHARGE TEST (June 1, 2017)	. 6
	5.3. HYDROLOGIC CALCULATIONS	. 7
	5.4. WATER SAMPLE ANALYSIS RESULTS (Entire Well Bore)	. 8
6.	INDIVIDUAL ZONE TESTING (July 13, 2017)	. 9
	6.1. TESTING TOOLS & PROCEDURE	. 9
	6.2. WATER SAMPLE ANALYSIS RESULTS (Six Different Zones)	. 9
7.	ZONE #6 ONLY TEST: 770'-810' (Nov. 6 THRU Nov. 9, 2017)	. 10
8.	ENTIRE WELL 6 DAY TEST: 450' TO 810' (Jan. 3 THRU Jan. 9, 2018)	. 11
9.	CONCLUSIONS	. 11

Vandenberg Community Services District 3745 Constellation Road Lompoc, California 93436 Attn: Mr. Joe Barget, General Manager

Re: Water Well Completion Report
Fire Station #51 Test Water Well Project
Located in south-central portion of property
749 Burton Mesa Boulevard
Lompoc, California

Assessor's Parcel Number 097-371-013

Dear Mr. Barget:

1. INTRODUCTION

Pursuant to your request, I herewith submit my WATER WELL COMPLETION REPORT for the recently completed 8⁵/₈-inch diameter (OD), SDR 17, PVC cased test water well drilled in the south-central portion of the Santa Barbara County (SBC), old Fire Station property, located on the above described parcel east of Vandenberg Village, California. The new *Fire Station #51 Test Well* was drilled in order to gain hydrologic information of the underlying strata in order to assess this site for the drilling of a larger diameter production water well to be used as a domestic supply for Vandenberg Village Community Services District (VVCSD). I have shown the location of the new well on the two attached maps (see WELL LOCATION MAP, Figure 1 and *SITE MAP*, Figure 2).

The general well drilling location was determined based on review of the hydrologic conditions of the area. VVCSD has been considering the drilling of one or more new wells within their service area in order to replace three aging wells located within two existing well fields located within the small unnamed canyon on the east side of Highway 1, southeast of Vandenberg Village. Access for the drilling of new wells within the two existing VVCSD well fields (identified as Well Field #1 to the north and Well Field #3 to the south) is constrained. Other potential well sites outside of the two existing well fields were therefore analyzed. Several candidate drilling areas were identified based on hydrologic conditions, access, environmental constraints, and reasonable post well construction logistics, including availability of grid (PG&E) electrical power and proximity to the pipeline distribution system. Attempts to secure a well drilling site within the Burton Mesa Ecological Reserve (BMER), managed by the State of California Department of Fish and Wildlife (CDFW), was taking considerable time and expense. SBC Department of General Services granted a two-year license to VVCSD to drill a deep test well on the decommissioned SBC Fire Station #51 property to test the local aquifer for production potential and water quality. Because of the uncertainty regarding both potential future production capacity and water quality from the underlying aquifer, it was decided to drill and test a new small diameter test water well on this site prior to the drilling and completion of a much more expensive, large diameter stainless steel production water well. This report provides the details regarding the siting, construction, design, and multiple testing procedures conducted for this new deep test water well on the Fire Station #51 property.

2. WELL SITING & GEOLOGIC/HYDROLOGIC SUMMARY

The existing VVCSD wells (within Well Field #1 and Well Field #3) and the new Fire Station #51 Test Well are all in an area underlain by strata identified as part of the *Lompoc Upland Groundwater Basin*. This Basin is composed mainly of layers of unconsolidated clay, silt, sand, and gravel identified as the Orcutt Formation, the Paso Robles Formation, and the Careaga Formation. Older, typically non-water bearing consolidated sediments underlie the Basin and are not considered good target aquifers for production of significant amounts of potable water.

The main water bearing rocks within the Lompoc Upland Groundwater Basin are the sand and gravel zones within the Paso Robles Formation and the massive fine to coarse grained sand within the Careaga Formation. The Paso Robles Formation sediments were deposited in a terrestrial (non-marine) stream and flood plain environment. The sandy portions of the Careaga Formation were deposited in a shallow marine or near shore environment similar to what is occurring now at places like Pismo Beach or Surf Beach. The strike (trend) of both of these strata are in a general east-west orientation. The layered to interbedded strata are inclined (dip) to the south at a gentle angle of approximately 3° to 8° in the area. The Basin clearly thins to the north and to the west were it "pinches out" against the underlying non-water bearing shale bedrock.

My new well siting recommendation was to stay "on-strike" (general east-west) orientation to the existing well field. Moving more than approximately ½ mile to the north (up dip) from the existing well field would place the proposed new well in an area where the Basin is getting too thin. The SBC Fire Station site is located relatively close, albeit slightly north of the trend of the aquifer between existing VVCSD wells and Mission Hills CSD wells located approximately 2 miles to the east. Production capacity and general water quality from all of these well fields is relatively good. The SBC Fire Station property also had good logistics for future development of multiple new production water wells, provided the proposed Test Well produced reasonable test results. The Fire Station #51 site has room for numerous new future water wells, is suited for development of a future VVCSD maintenance building and treatment infrastructure, has an existing water pipeline and easement from the site westward to the VVCSD Well Field #1, electric power, and other surface logistical advantages over other well sites within the BMER. After several meetings and discussion with you and your Board members, the District decided to pursue acquisition of the SBC Fire Station #51 property.

The final well site was reviewed and approved by you prior to the permitting and move on of the drilling equipment. Once the well site was approved, I prepared the required *WATER WELL DRILLING PERMIT APPLICATION* and *WELL LOCATION MAP* for the well project and submitted it to the Santa Barbara County, Department of Environmental Health Services (EHS) for processing. The Santa Barbara County Permit (WP# 0001924) was approved on March 23, 2017. I have included a copy of the approved well permit within the Appendix of this report.

3. TEST HOLE DRILLING

The Drilling Contractor for this project was *Filipponi & Thompson Drilling Company* of Atascadero, California. The drilling equipment was moved to the site on May 4, 2017. The initial stage of the well project was to drill and set a section of Conductor Casing in order to stabilize the upper portion of the bore hole and act as the required sanitary seal. The 18-inch diameter by ¼-inch wall thickness, A-53 grade mild steel casing was set in a 28-inch diameter bore hole to a total depth of 52 feet. A 6-sack mix of cement and sand slurry was pumped into the annulus between the Conductor Casing and the bore hole. The concrete acts as the required sanitary seal per Santa Barbara County EHS Code. Approximately 5 cubic yards of concrete was pumped into place during this phase of the well construction process. Mr. Lloyd Simms, Santa Barbara County EHS staff was present and witnessed the placement of the sanitary seal.

After placement of the Conductor Casing, the sanitary seal was allowed to cure over the weekend prior to drilling. Drilling of the deep test hole was then initiated on May 8, 2017. The deep test hole was drilled using a 9⁷/₈-inch diameter tri-cone bit utilizing standard mud rotary drilling techniques. Standard high grade bentonite drilling mud, long chain organic polymer additive (Drispac© SuperLo) and water were used as a drilling fluid for this project. The use of bentonite clay (and modest amounts of Drispac) within the drilling mud system was necessary in order to stabilize the bore hole during drilling and to aid in the removal of the drill cuttings from the test hole. Formational samples were collected and penetration rates recorded at 10-foot intervals from the ground surface to the total depth of the test hole to aid me in my determination of the final well depth and design. The test hole was drilled to a depth of 804 feet. The test hole was terminated based on the presence of significant quantities of water bearing sand and knowing that elsewhere in the Basin, the groundwater can contain hydrogen sulfide gas at deeper levels.

After completion of the test hole, a series of geophysical logs were run down the open bore hole to analyze the subsurface conditions. The logging tool was run down the bore hole to a total depth of 804 feet. The geophysical logs consisted of a Spontaneous Potential (SP) curve, a single point curve, and a short (16-inch) and long (64-inch) normal electrical resistivity curve. **Boredata** of Bakersfield, California ran the geophysical log. A copy of the geophysical log is included within the APPENDIX of this report. Review of the formational log and geophysical log indicated that the well penetrated into the top of the Careaga Formation at an approximate depth of 308 feet. The remainder of the lower portion of the bore hole penetrated mainly massive fine to medium grained sand with thin interbeds of fine gravel and clay. I also noted a thin zone (±510' to ±518') with fragments of fresh (unweathered) redwood chips within the fine to medium grained sand. The remainder of the lower portion of the bore hole was composed of massive sand. The test hole was deepened slightly (to a final depth of 840') after the running of the geophysical log in order to provide "over hole" for the placement of the casing string. That portion of the bore that was not logged with a geophysical tool is composed of fine grained sand and silt indicative of passing into the lower (Cebada) member of the Careaga Formation.

After review of the formational cuttings, penetration rate information, and the geophysical log, I recommended completion of the test well by placement of 8⁵/₈-inch diameter, SDR 17 (thick wall), PVC casing. A well design was recommended based on the character and depth of the penetrated sediments and review of the geophysical log, in conjunction with maximizing well yield in this area within reasonable economic constraints. The final well completion specifications were then forwarded to the Drilling Contractor.

Based on the above information, I determined that the bore hole penetrated a thick sequence of water bearing materials, dominated by the Careaga Formation. Most of the lower portions of the well bore appeared to be water bearing with good permeability and the potential for high well yields. It is noteworthy that you can not predict detailed water quality by evaluation of the formational cuttings and geophysical log, especially at a resolution of parts per billion of dissolved solids. The formation log and geophysical log did, however, have similar characteristics as those from other VVCSD wells and the Mission Hills CSD wells. Based on review of the test hole and geophysical log, it was my opinion that completion of a new test well was justified. Prediction of final production flow rates from the new well could not be determined until after the well was completed and tested. Based on a discussion with you regarding the project, I recommended completion of the new test well to a total depth of 820 feet utilizing 8°/8-inch diameter PVC casing and high density well screen in order to maximize production from all the available water bearing zones. Three sections of well screen were placed within the well casing string separated by short sections of blank (non-perforated) casing. The well design allows for "zone testing" of three separate areas within the stratigraphic (formational) column that are separated by a thin clay layer. The two clay layers that segregate the better producing zones within the formation can be seen on the geophysical log and are located at a depth of 598' to 600' and from 712' to 715'.

4. WELL COMPLETION AND DEVELOPMENT

The initial 9⁷/₈-inch diameter test hole was then reamed to a larger diameter for placement of the recommended well casing string. In this case, the test hole was reamed to a final diameter of 16 inches from the bottom of the Conductor Casing (52 feet) to a depth of 840 feet, providing for approximately 20 feet of so-called "overhole". After the bore hole was reamed to full size and depth, the drilling fluids were displaced with fresh water to a funnel viscosity slightly above that of water (approximately 26-27 seconds). A combination string of 8⁵/₈-inch (OD) diameter, SDR 17 PVC blank casing and high efficiency PVC well screen was then inserted into the reamed bore hole to a total well completion depth of 820 feet. The well screen has six columns of high density, machine cut slots with an opening of 0.040 inches, providing a total open space of approximately 30.8 square inches per foot of perforated casing. An exact casing schedule and other details of the well construction process for the VVCSD Fire Station #51 Test Well is provided on the *WATER WELL SUMMARY SHEETS* and on the *WATER WELL DRILLERS REPORT* located in the APPENDIX.

After placement of the casing string, the annular space between the outside of the casing and the wall of the bore hole was then filled with a specially graded coarse sand gravel pack. The gravel pack consists of U.S. Standard Sieve Size #8 by #20 material (Lapis Lustre #3) purchased from CEMEX of Marina, California. This special gravel pack material is designed to reduce the potential for formational sand migration into the well casing during pumping, while maintaining good filter permeability. The gravel pack is composed of well sorted, sub-rounded to sub-angular silica rich (quartz rich) sand grains.

The well development process was initiated by running the drill pipe and jetting tool into the well casing and using high pressure compressed air to void the well bore of the residual fluids. Air jetting was continued until the fluid was relatively clear. After the well casing was relatively clear of residual drilling fluids, the contractor injected and swabbed into place approximately 5 gallons of a liquid clay dispersant (Baroid Aqua-Clear). The swabbing process with dispersant both mechanically agitates the annulus and chemically breaks down the residual drilling mud "wall cake" and aids in settling the gravel pack material into place. The well was then air jetted again to remove all remaining drilling fluids and clay dispersant. The drilling rig and other equipment were then removed from the site.

5. PRELIMINARY TESTING (May 30-June 1, 2017)

After the well was fully developed using air and swabbing, Filipponi & Thompson Drilling installed a 60 horsepower (HP) submersible pump within the well bore at a depth of 441 feet below ground surface. Water level measurements during the test were taken by use of an electric wireline sounder. Water production rate was determined by use of a flow metering system. The test pumping procedure consisted of surging and pumping of the well to further develop the aquifer and to improve efficiency. After the well was fully developed, a **step drawdown test**, a 4-hour **constant discharge test**, and a subsequent 1-hour **recovery test** were conducted. Water samples were collected during these tests in order to assess the chemical makeup of the water and to determine if there were indications of organic compounds impacting the local aquifer. All of these preliminary tests were conducted in order to:

_	further	develop	the a	quifer;

- collect well test data;
- evaluate the hydrologic properties and potential productivity of the aquifer; and
- to collect a water sample for chemical analysis.

5.1. STEP DRAWDOWN TEST (May 30, 2017)

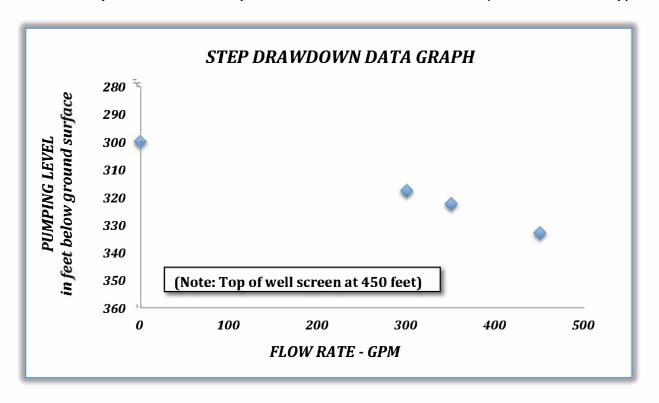

A step drawdown test was conducted on the well in order to gain insights into its production capacity. Three individual steps at various flow rates were conducted on the new test well at a constant flow rate of 300, 350, and 450 gpm for a period of approximately 30 minutes each. The test results are included in the table on the following page:

TABLE 1: Step drawdown Test Data - Fire Station #51 Test Well (30 minutes each step)

FLOW RATE (GPM)	WATER LEVELS (feet)	DRAWDOWN (feet)	SPECIFIC CAPACITY (gpm/foot of drawdown)
0	300.0	0	Static water level
300	317.8	17.8	16.8
350	322.5	22.5	15.6
450	330.0	33.0	13.6

I have plotted the above listed short duration test data onto a graph that illustrates the relationship between flow rates and pumping levels (see **CHART 1** below). You can observe from this chart that the relationship between pumping levels and drawdown appears to be semi-linear and relatively efficient at flow rates up to approximately ±450 gpm, based on short term testing data. Based on review of this test data, I recommended that we conduct the 4-hour constant discharge test at a flow rate of 400 gpm.

CHART 1: Step Drawdown Data Graph - VVCSD Fire Station #51 Test Well (30 minutes each step)

5.2. CONSTANT DISCHARGE TEST (June 1, 2017)

After completion of the step-drawdown test, the well was allowed to "rest" overnight to allow for reestablishment of original static water level conditions. The static water level at the beginning of the constant discharge test was 300.0 feet below the top of the casing. The constant discharge test for the Fire Station #51 Test Well was run at a flow rate of 400 gpm. Pumping of the Fire Station #51 Test Well

caused water levels to drop fairly rapidly during the first few minutes of pumping. Pumping water levels then stabilized for most of the test. The final pumping level was located at a depth of 326.5 feet after 180 minutes (3 hours) and remained there (within 1 inch) for the duration of the 4-hour test. The pump test data is graphically presented on the *HYDROLOGIC CALCULATION GRAPH* included within the Appendix of this report (See Figure 4).

Based on a maximum pumping level of 326.5 feet, total drawdown is calculated to be 26.5 feet (326.5' – 300.0' = 26.5'). The water from the Fire Station #51 Test Well was observed to be total clear almost immediately after the initial startup phase of the testing procedure. There was no indication of any gravel pack material, fine formational sand, or hydrogen sulfide (H₂S) gas throughout the test. A water sample was collected during the test and sent for chemical analysis to *Fruit Growers Laboratory (FGL Environmental)* of Santa Paula, California. The results of these tests are discussed below.

After the 4-hour constant discharge test was completed, a 60-minute recovery test was conducted, whereby the rising water levels within the well were measured (see *RECOVERY TEST DATA SHEET* in the APPENDIX). The water level within the well bore recovered to within 0.6 feet of the original level within 60 minutes. Full recovery of the static water levels is predicted to have occurred within several more hours of recovery. I have graphically shown the recovery data on the *HYDROLOGIC CALCULATION GRAPH* (Figure 4) and the *t/t' RATIO vs. RESIDUAL DRAWDOWN GRAPH* (see Figure 5). The *t/t'* Ratio vs. Residual Drawdown Graph suggests that the local aquifer was not significantly impacted (dewatered) as a result of the short duration (4 hour) test pumping procedure because of the relationship between the recovery data and the "0 foot" intercept point. Some caution should, however, be exercised regarding dewatering impacts as a result of declining static and pumping water level conditions through prolonged periods of time and/or during drought cycles.

5.3. HYDROLOGIC CALCULATIONS

Review and analysis of the test pumping data allows for calculations of various hydrologic parameters. The *transmissivity* (T) of the Fire Station #51 Test Well was calculated using the modified Theis equation (T = $264 \times Q/\Delta s$). The well has a calculated transmissivity in excess of 100,000 gallons per foot of available aquifer, where Q is the pumping rate and Δs is the change in drawdown per log cycle of time (see Figure 2). Transmissivity is a measurement of the relative permeability of a particular aquifer; in other words, the ability of permeable earth materials to pass fluids. The transmissivity figure for the subject well is considered to be very good for this area and is most likely due to the presence of thick sections of massive, well sorted medium grained sand within the Careaga Formation.

The **specific capacity** (Q/S) is constantly changing as the well draws down (S) under a constant pumping rate (Q). The specific capacity of the subject well is calculated to be approximately 15.1 gallons per minute per foot of drawdown after 4 hours of pumping at 400 gpm (400 gpm/26.5 feet of drawdown). A higher number means you can pump more water per incremental drop in pumping levels within the well. The specific capacity figure of 15.1 gpm/ft. drawdown is also considered good for this area. Higher

specific capacity figures would most likely occur by construction of a well with larger diameter casing with wire wrap well screen. Wire wrap screen has greater amounts of "open space" within the casing structure allowing for easier (less friction) water entry into the inside of the well casing.

Based on extrapolation of the above described constant discharge data, *theoretical* pumping levels can be predicted for longer periods of time and at differing flow rates. I have extended the drawdown curve to show where pumping levels may be after prolonged periods of time. Because the pumping water levels did not drop significantly during the short duration test, it can be assumed that they will be relatively steady through time. I have also shown the step-drawdown test data points on the Hydrologic Calculation Graph for reference. As an example, pumping the subject well at a flow rate of 450 gpm will produce only a modest amount of drawdown with an estimated pumping level of approximately 330 feet below ground surface under current hydrologic conditions.

It is noteworthy that the uppermost perforated interval for this well is located at a depth of 450 feet. Applying a specific capacity figure ±15 gpm/ft. of drawdown to a theoretical large diameter production well at this site would therefore allow for pumping of such a well at a flow rate of in excess of 1,000 gpm. It is also noteworthy that the pumping of wells completed into the Careaga Formation at this high of a flow rate can induce the production of fine formational sand because of the fine grained nature of the aquifer. The key to sand free production from wells completed into the Careaga Formation is to maintain entrance velocities of the groundwater into the well bore at very slow speeds. This requires the placement of large diameter (stainless steel) casing with large amounts of open space within the screened interval of the casing string.

5.4. WATER SAMPLE ANALYSIS RESULTS (Entire Well Bore)

A series of water samples were collected by a representative of FGL Environmental on May 31, 2017 and sent for chemical analysis to their lab in Santa Paula, California. This sample series was collected from the well with the entire well screen being produced in an unrestricted manner (no zone segregation). The results of the full Title 22 (Inorganic and Organic) tests are included within the Appendix of this report. In summary, the well water has a relatively low total dissolved solids (TDS) content of 570 mg/L. The well water has elevated amounts of arsenic, iron, and manganese. There are federal and state SECONDARY drinking water standards for iron and manganese so the elevated levels of these two contaminants do not present a health risk for domestic use, although they sometimes impart a metallic taste to the water. There is, however, a federal and state PRIMARY drinking water standard for arsenic. The elevated amount of **arsenic** (28 ug/L, parts per billion) is above the Maximum Contaminant Level (MCL) of 10 ug/L and would require treatment in order to meet potability standards (see FGL report in Appendix).

Testing of the water was also done for volatile organic compounds. The test results showed trace amounts of Bromoform, Chloroform, and Dibromochloromethane. All of the content levels of these constituents were below the Maximum Contaminant Level (MCL) for drinking water as established by the Environmental Protection Agency (EPA) and the State of California. Upon research, it was found that the

presence of these particular organic compounds within groundwater commonly occurs as a result of chemical reaction with chlorine that was used to disinfect the well shortly after its completion. Sampling and retesting of water samples from the well during further prolonged pumping showed Non-Detect (ND) for the above listed organic compounds (see Clinical Laboratory of San Bernardino report dated July 13, 2017). Because of the presence of elevated amounts of arsenic within the local groundwater, additional testing was done to determine if it is emanating from a particular zone of the stratigraphic column within the well bore.

6. INDIVIDUAL ZONE TESTING (July 13, 2017)

6.1. TESTING TOOLS & PROCEDURE

I prepared a set of zone testing specifications for this procedure and submitted them to Fisher Pump of Santa Maria, California so they could setup up the equipment. The equipment used for this procedure was a so-called double swab cup assembly, whereby two snug fitting, round rubber cups cut to approximately the same diameter of the inside of the PVC casing string were placed above and below a 3 horsepower (HP) electric submersible pump with a separation of approximately 3.5 feet between the cups. The double swab cup assembly was run into the well bore and placed at specific depths within the well bore in order to collect samples of the groundwater. The depth of placement of the sampling tool for each of the 6 zones that were tested is shown on the *WELL CONSTRUCTION PROFILE* (see Figure 3). All of these zone are lithologically composed mainly of fine to medium grained sand and were defined based on review of the formational cuttings and geophysical log.

6.2. WATER SAMPLE ANALYSIS RESULTS (Six Different Zones)

Six different finite zones within the well casing were sampled. The depth of these zones were selected based on review of the formational log and the geophysical log. The zone tests were conducted across a broad depth range within the Careaga Formation aquifer. Two samples were collected within each of the three general water bearing zones that are separated by a thin clay layer as described in Section 3, Page 4 of this report. Groundwater was pumped within the six zones at a flow rate of ±30 gpm for approximately 30 minutes each prior to collection of the water samples so that undiluted water was being sampled. The collected water was analyzed by *Clinical Laboratories of San Bernardino* for each of the constituents as shown on *TABLE 2* within the Appendix. In summary, the four volatile organic compounds that showed trace amounts within the original bulk water sample from the May 31, 2017 test (*Bromoform, Chloroform, Dibromochloromethane*, and *Total Trihalomethane*), where now *nondetect (ND)* within the zone testing (July 13, 2017) samples. Additional samples were collected and analyzed for *Specific Conductance, TDS, Iron, Manganese*, and *Arsenic*. While the Specific Conductance and TDS were relatively good, the well water did show elevated amounts of iron, manganese and arsenic within most of the zones. Iron content appears to increase with depth with a high reading of 4,400 ug/L within the deepest (781.5' – 785') zone. Manganese content is fairly consistent

within all six zones, with a range of ± 140 to 170 ug/L. Arsenic content was variable between 18 and 31 ug/L within all the zones except the deepest zone (781.5' - 785'), where it showed a reading of 4.3 ug/L.

7. ZONE #6 ONLY TEST: 770'-810' (Nov. 6 thru Nov. 9, 2017)

As described in Section 6 above, the water quality testing program conducted on July 13, 2017 within the six separate defined areas of the subject well showed the presence of elevated amounts of arsenic within all the zones except the lowest, from 781.5' to 785' (see TABLE 2). After a discussion with VVCSD staff and with approval of the Board, the District decided to re-test the lower portions of the well bore, from 770' to 810' (the bottom of the well screen) to determine if the arsenic content would change after prolonged periods of pumping. A new zone testing tool was built by Fisher Pump and placed within the well bore. This tool had a single, snug fitting rubber swab cup placed at a depth of 770' with a 10 HP submersible pump placed below the packer.

This test was run continuously for approximately 3 days at a flow rate of 80 to 95 gpm under the supervision of VVCSD staff. Water level measurements were also taken during the test. The static water level at the beginning of the test was at a reported depth of 297.9'. Continuous pumping of the well for ±73 hours produced a final pumping level of 303.5' for a total drawdown of 3.6'. This indicates a specific capacity figure of ±21.9 gpm/foot of drawdown, slightly above that calculated during the July 13, 2017 test of the entire screened portion of the well. This implies that the efficiency of the well may still be improving slightly through time due to additional aquifer development, or that well efficiency is very good at relatively lower flow rates. It also indicates that the efficiency of the aquifer was not dramatically impacted by pumping from a relatively confined (40 foot) producing zone within the well bore (770' to 810').

Two sets of water samples were collected by VVCSD staff at ±6 hour intervals during this 3 day test. These samples were sent for chemical analysis to Oilfield Environmental & Compliance, Incorporated and to Clinical Laboratory of San Bernardino of Lompoc, California for comparison. The two sets of test results are included within the Appendix. I have outlined the test pumping data and results of the water chemical analysis reports from this test on the attached Test Pump Data Sheet (see 770' to 810' Zone Test for Arsenic Content Data Sheet in Appendix). I have prepared a Zone Test Data Graph for these test results to illustrate the increase on arsenic content from the produced groundwater through time (see Figure 6 in the Appendix). The test results shows that the arsenic content from the deep portions of the well bore gradually increased over the 3 day period from a low of 5.6 ug/L recorded shortly after the start of the test, to a high of 150 ug/L after 3 days (4,376 minutes). The two testing laboratories had relatively similar results from their samplings. Pumping of the well was terminated after 3 days because the initial test results showed that the produced groundwater was well above the State and EPS Standard of 10 ug/L. The rising arsenic level is interpreted as showing that groundwater slowly migrates up and down the water column (aquifer) because of the massive, unconfined nature of the Careaga Formation.

8. <u>ENTIRE WELL 6 DAY TEST: 450' to 810'</u> (Jan. 3 thru Jan 9, 2018)

After completion and analysis of the 3 day, 770' to 810' zone test, the District requested that we conduct an additional test on the entire well for a longer period of time in order to determine if the arsenic content for the full thickness of the water column may change through time. We had Fisher Pump install a 10 HP submersible pump into the well bore at a depth of 385'. This long duration test was initiated on January 3 and continued until Jan 9, 2018 (six days) at a continuous flow rate of 85 to 95 gpm for a period of 6 days (8,640 minutes). Water samples were collected from the well by VVCSD staff every 6 hours throughout the test for a total of 13 samples. The samples were sent for chemical analysis to Oilfield Environmental & Compliance, Incorporated. A copy of the test results from the lab is included within the Appendix. I have plotted the test results onto an Entire Well (450' to 810') Zone Test Data Sheet for your review. I have also plotted the arsenic content results onto an Entire Well Zone Test Graph to visually see how the arsenic content changed through time (see Figure 7).

In summary, the arsenic content remained fairly constant from the start of the test for approximately 2 days of pumping at ±90 gpm with a range of approximately 23 ug/L to 27 ug/L. This figure is consistent with the well test sample taken during the original (June 1, 2017) 4-hour constant discharge test for the entire screened section of the well at a higher flow rate of 400 gpm. Continued pumping of the well showed that the arsenic content of the produced groundwater gradually increased through time to a high reading of 34 ug/L after 6 days (8,640 minutes) of continuous pumping.

9. CONCLUSIONS

The Fire Station #51 Test Well produces groundwater mainly from the fine to medium grained sands from the Pliocene age Careaga Formation. These thick, uniform grained size (massive) sand layers accumulated in a shallow marine to near shore (non-marine) depositional environment similar to what can be seen in modern times along the Surf Beach and Pismo Beach coastal shorelines of the Central Coast. There are occasional layers of fine shell fragments found within the formational cuttings, indicative of intermittent shallow marine (sandy beach) origin. I also noted a thin (within a several foot thick) zone of fresh redwood chips located at a depth of 510', indicative of a terrestrial (sand dune type) depositional environment. This formation, and to a lesser extent the overlying Paso Robles Formation are the primary groundwater aquifers for the Lompoc Upland Groundwater Basin. My geologic and hydrologic knowledge of the area indicates that this well site is located in the west-central portions of the Basin. The Basin thins to the west and north where it unconformably laps onto the underlying, non-water bearing, shale bedrock including the Foxen, Sisquoc and Monterey Formations. The Basin thickens, is hydrologically connected to, and most likely provides a partial source of recharge to the Lompoc Plain Groundwater Basin located to the south.

This portion of the Basin has historically been a reliable source of groundwater to wells in the area for many decades. Groundwater levels (both static water level and pumping) and flow rates from this well

and other wells in the area are relatively stable although they can, and will in the future, change somewhat through time as a result of the amount of pumpage (withdrawal for consumptive use) and recharge (replenishment mainly by percolation of rainfall and surface water runoff) that occurs during heavy rainfall periods. Declining static and pumping water levels are usually an indication of a decline in the water table during periods of prolonged drought and/or reduced well performance due to plugging of the well screen by encrustation or biofouling (commonly the buildup of iron bacteria).

A drop in the general water table due to drought conditions can be observed by review of observation well data. My review of several hydrographs from United States Geologic Survey (USGS) monitoring wells located in the vicinity of Vandenberg Village show that water levels have been relatively steady for many decades. These same hydrographs shows that the local aquifer has declined by approximately 10 feet in the past ±10 to 12 years, indicative of the impact of the prolonged drought conditions we have been experiencing in recent years. However, review of longer term (many decade) hydrograph data suggests that the local aquifer responds favorably to heavy, multi-year rainfall cycles because of the high permeability characteristics of the local sandy aquifer and shallow subsurface earth materials. Considering that the water saturated portion of the Basin (below the top of the water table) is over 500 feet thick in this area, a 10 foot drop in the water table during a severe drought cycle does not appear to be significant in terms of aquifer reliability at this point in time. Continued monitoring of the local aquifer conditions (pumpage and water level data) will be important in gaining better hydrologic information regarding the long term condition of the Lompoc Upland Groundwater Basin.

The design of the Fire Station #51 Test Well was such that I purposefully placed the top of the well screen at a depth of 450' below ground surface, approximately 150 feet below the top of the existing static water table located at a depth of ±300'. This well design was meant to approximate the probable well design of a larger diameter well that could be drilled at this site in the future, provided water quality issues related to the presence of arsenic, iron, and manganese within the local groundwater can be economically addressed. The yield from the well is very good with a calculated specific capacity reading of ±15 gpm/ft. drawdown at moderately high flow rates (400 gpm). Based on this preliminary calculation of well/aquifer efficiency, a larger diameter well at this site should theoretically be able to produce groundwater at a rate of 600 to 1,000 gpm or more, provided that it is designed and constructed properly. Larger diameter. stainless steel casing utilizing wire wrap well screen should have a somewhat higher specific capacity figure because of the ability to place well screen with an increased amount of "open space" within the perforated interval of the casing string. Some caution should be exercised regarding prediction of potential flow rates from a future new well in this area that produces groundwater from the Careaga Formation. As mentioned above, primary aquifer is composed of fine to medium grained, massive sand. Other wells in the area are known to produce formational sand and silt during pumping, especially at higher flow rates. High flow rates equate to high entrance velocities of the groundwater passing through the gravel pack and well screen from the aquifer into the inside of the well casing. This can cause the fine sand to be carried into the well bore by the groundwater during pumping. The potential for production

of formational sand can normally be mitigated by proper well and gravel pack design in most cases. This is usually done by reducing the slot size on the well screen and installing a finer sieve size (gradation) of gravel pack within the annulus. Fine slot size and finer gravel pack gradation will also create greater "friction" (lower permeability) in the flow pattern of water entering the well bore, thereby effectively reducing specific capacity and potential flow rates. In summary, it is always a trade off between designing a well with a large enough slot size and gravel pack gradation, while at the same time reducing the risk for production of fine formational sand during pumping. This concept is especially important for wells that produce groundwater from the Careaga Formation. It is noteworthy that the Fire Station #51 Test Well has a slot size of 0.040 inches and good quality gravel pack material with a U.S. Sieve Size gradation of #8 by #20 (so-called Lapis Lustre #3). This test well did not produce any significant amounts of fine formational sand or silt during pumping at relatively high flow rates.

The main difficulty with the use of a new large diameter production water well at this site as a source of domestic use water is the presence of elevated amounts of arsenic that are above the federal and state MCL of 10 ug/L. The presence of elevated amounts of arsenic (and iron and manganese) within the local groundwater was not predicted before the siting and construction of the test well because this area is located "on trend" with a similar well design as other wells in the area that do not show high levels of arsenic. I do not have a reasonable explanation as to why this particular area has elevated amounts of arsenic within the groundwater. Individual zone testing of the well showed that the concentration of arsenic appears to be relatively evenly disbursed across the entire water column (18 ug/L to 32 ug/L) with the exception of the lower (Zone #6) located near the bottom of the well bore with a reading of 4.3 ug/L. Testing to determine if pumping of only this lower portion of the well (from 770' to 810') would allow for longer term production of groundwater with manageable amounts of arsenic did not prove favorable as the arsenic content gradually increased after several days of pumping (see test results in the Appendix).

Treatment for removal of arsenic within groundwater is a difficult process. You will have to research and consider the economic impact of these treatment options including initial installation of the treatment facility, long term operation and maintenance costs of the system, and handling and disposal of the residual brine water produced by the treatment process.

Depending on what you decide to do with the new Fire Station #51 Test Well, I recommend that you contact the USGS and allow them access to the well for measurement of water level data into the future. Collection and interpretation of long term water table elevation in this and other parts of the Lompoc Upland Groundwater Basin are critical to gaining insights into how the basin is responding to pumping and seasonal recharge.

I trust this summary report and graphics provides you with the information needed for long term planning decisions regarding use of your new well. If I can be of further assistance to you regarding this report or other geologic or hydrologic concerns, please feel free to call upon me.

Sincerely,

Mr. Rick Hoffman

Certified Engineering Geologist & Hydrogeologist

Rich Hoffman

State of California

RG #3740 EG #1135 HG #448

enclosures

APPENDIX

WATER WELL COMPLETION REPORT VVCSD Fire Station #51 Test Well 749 Burton Mesa Boulevard, Lompoc, California

LIST OF FIGURES and SUPPLEMENTAL INFORMATION

ORDER OF WORK

WATER WELL SUMMARY SHEETS

Figure 1 WELL LOCATION MAP

Figure 2 SITE MAP

WATER WELL DRILLING PERMIT

Santa Barbara County

Department of Environmental Health Services

WP #0001924

GEOPHYSICAL LOG

Boredata

Bakersfield, California

WELL COMPLETION REPORT

filed by Filipponi & Thompson Drilling Company

State of California WCR2017-001500

Figure 3 WELL CONSTRUCTION PROFILE with Zone Testing Data for Arsenic

TEST PUMPING DATA (June 1, 2017 4-hour test at 400 gpm)

Constant Discharge Test

Recovery Test

- Figure 4 HYDROLOGIC CALCULATION GRAPH (June 1, 2017 test)
- Figure 5 t/t' RATIO vs. RESIDUAL DRAWDOWN GRAPH (June 1, 2017 test)

WATER CHEMICAL ANALYSIS REPORT (Entire Well Title 22 Test)

FGL Environmental (May 31, 2017 test results)

TABLE 2 ZONE TESTING SUMMARY (July 13, 2017 Six Individual Zones)

WATER CHEMICAL ANALYSIS REPORT (Individual Zone Test Results)

Clinical Lab of San Bernardino (July 16, 2017 test results)

TEST PUMPING DATA (Nov. 6-9, 2017: 3 day zone test at ±90 gpm)

770' to 810' Zone Test Data Sheet with Arsenic test results

Figure 6 770' to 810' ZONE TEST DATA GRAPH (Nov. 6 thru Nov. 9, 2017 test)

Clinical Lab of San Bernardino (Nov. 6-9, 2017 test results)

OEC Lab (Nov. 6-9, 2017 test results)

TEST PUMPING DATA (Jan. 3-9, 2018: six day zone test at ±90 gpm)

Entire Well (450' to 810') Test Data Sheet w/Arsenic test results

Figure 7 Entire Well (450' to 810') TEST DATA GRAPH (Jan. 3 thru Jan. 9, 2017)

OEC Lab (Jan. 3 thru Jan 9, 2017 test results)

APPENDIX

WATER WELL COMPLETION REPORT VVCSD Fire Station #51 Test Well 749 Burton Mesa Boulevard, Lompoc, California

ORDER OF WORK

Preliminary Hydrologic Investigation

Burton Mesa Ecological Reserve Property: Hydrologic & Biologic Assessment Santa Barbara County: Fire Station #51: Hydrologic Assessment

Test Well Construction

Santa Barbara County EHS Well Permit Process; (see copy in Appendix)
Drill 840' test hole: favorable formational cuttings, mainly Careaga Formation sands
Run Geophysical Log: favorable indications of good production potential (see copy in Appendix)
Set 8" diameter PVC casing string, Lapis #3 gravel pack to 820', develop by air & water jetting
Well design allows for zone testing as required (see Figure 3)

Preliminary Well Testing (June 1, 2017) (Filipponi & Thompson Drilling Company)

Cleanup work, step-drawdown test, 4-hour constant discharge test & recovery test (see Figure 4 & 5)

High Transmissivity: ±100,000 gpd/ft. aquifer

High Specific Capacity: ±15.1 gpm/ft. drawdown

Water sampling:

Full Title 22 Testing: May 31, 2017 (see FGL Environmental Test Results) Water has high: iron, manganese, arsenic (28 ug/L), bromoform, chloroform & dibromomethane

Zone Testing (July 13, 2017) (Fisher Pump)

3 HP pump placed between 2 rubber swab cups lowered into well bore each zone pumped for ±1/2 hr. prior to sampling (see WELL CONSTRUCTION PROFILE, Figure 3) Test Results summary graphic shown on TABLE 2

The 3 volatile organic compounds from June 1, 2017 test showed "non-detect" during pumping High arsenic in all zones except Zone 6 from 781.5 to 785' (4.3 ug/L) (see Figure 3 & Table 2)

Zone #6 Zone Testing over 3 days (Nov. 6th thru Nov. 9th, 2017) (Fisher Pump)

80 to 95 gpm continuous pumping for 3 days, sampling at ±12 hour intervals well sampling showed gradual increase in Arsenic content from 5.6 to 130 ug/L (see Figure 6)

Entire Well (450' to 810') Testing over 6 days (Jan. 3rd thru Jan 9th, 2018) (Fisher Pump)

85 to 95 gpm for 6 days, sampling at ± 12 hour intervals

well sampling showed gradual increase in Ar content from 23 to 34 ug/L (see Figure 7)

APPENDIX

WATER WELL COMPLETION REPORT VVCSD Fire Station #51 Test Well 749 Burton Mesa Boulevard, Lompoc, California

Well Owner: Vandenberg Village Community Services District

c/o Mr. Joe Barget, General Manager

3745 Constellation Road Lompoc, California 93436-1495

(805) 733-2475

Well Location: ±150 feet east of driveway entrance to Old Fire Station #51 property

749 Burton Mesa Boulevard

Lompoc, California

Assessor's Parcel Number 097-371-013

GPS Coordinates: N34° 41' 47.5" by W120° 26' 59" (Google Earth reading only)

Surface Elevation: ±340 feet

(see WELL LOCATION MAP, Figure 1)

Well Drilling and Test Pumping

Contractor: Filipponi & Thompson Drilling Company

Post Office Box 845

Atascadero, California 93423

contact: Mr. Ned Thompson, Owner

(805) 466-1271

Zone Testing

<u>Contractor:</u> Fisher Pump & Well Services

2285 A Street

Santa Maria, California 93455 contact: *Mr. Scott Fisher, Owner*

(805) 346-2422

Engineering

Geologist: Rick Hoffman and Associates

1149 Palomino Road

Santa Barbara, California 93105 contact: *Mr. Rick Hoffman*

(805) 569-1911

WATER WELL COMPLETION REPORT Fire Station #51 Test Well Burton Mesa Boulevard, Lompoc, California

Date of Well

Completion: May 11, 2017 (placement of sanitary seal)

Total Depth of

Completed Well: 820 feet (see Water Well Drillers Report)

Depth of

Sanitary Seal: 52 foot concrete sanitary seal, pumped into place (see Well Drillers Report)

Size and Type of

Well Casing: 8 5/8 inch diameter (OD), SDR 17 PVC casing & high efficiency PVC well screen

0' - 450' 8 5/8" diameter PVC blank well casing

450' - 590' 8 5/8" diameter PVC well screen with 0.040" slots

590' - 610' 8 5/8" diameter PVC blank well casing

610' - 690' 8 5/8" diameter PVC well screen with 0.040" slots

690' - 730' 8 5/8" diameter PVC blank well casing

730' - 810' 8 5/8" diameter PVC well screen with 0.040" slots 810' - 820' 8 5/8" diameter PVC blank well casing & bottom cap

Size and Type of Gravel Pack:

U.S. Standard Sieve Size #8 x #20 (Lapis Lustre #3), CEMEX Company

Test Pumping Results:

Date of Test Pumping: June 1, 2017 Preliminary Testing Procedure

Static Water Level: 300.0 feet below ground surface

Length of Test Pumping: 4 hours

Test Pump Flow Rate: 400 gallons per minute (gpm)

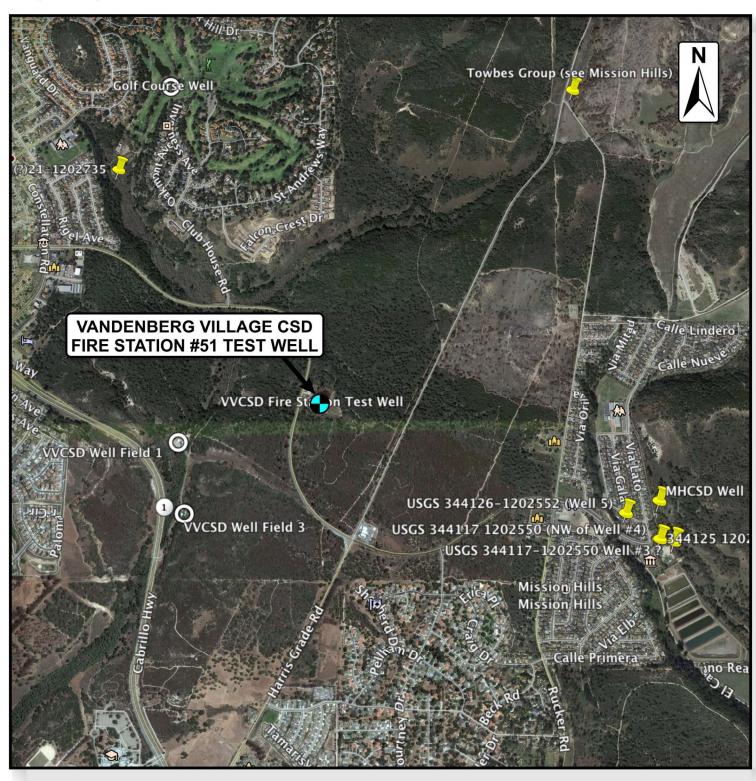
Specific Capacity: 15.1 gallons per foot of drawdown

after 400 minutes (see discussion in text)

Transmissibility: >100,000 gallons per day per foot of available

aguifer (see discussion in text)

Water Quality


Analysis Results: various test results from multiple contractors depending on type of analysis

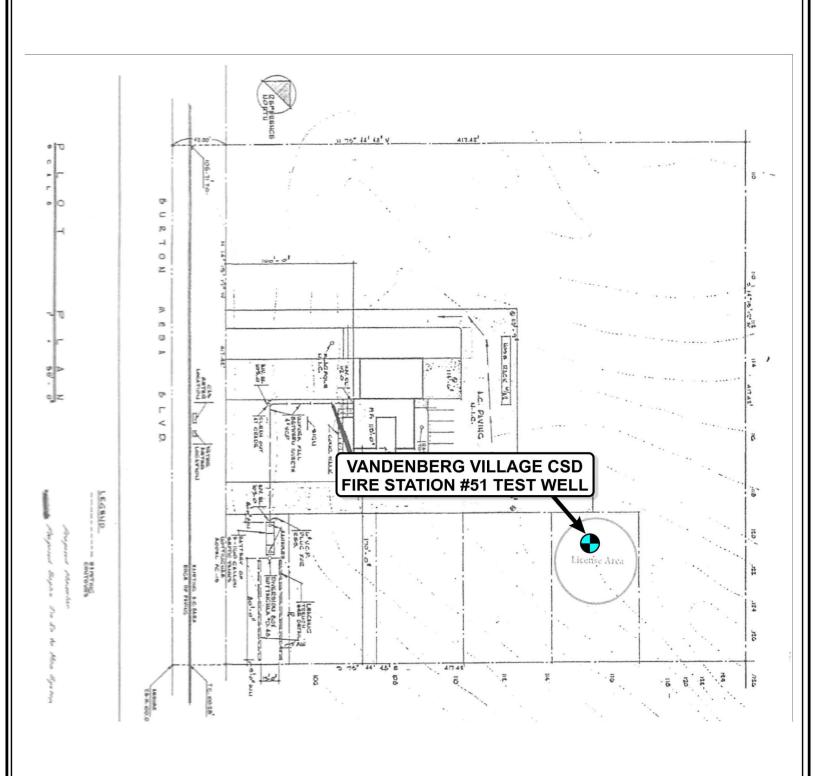
Results: initial (entire well) May 31, 2017 test

Total Dissolved Solids: 570 parts per million (MCL 1,000 ppm)

Arsenic content: 28 ug/L (MCL 10 ug/L)
Iron content: 600 ug/L (MCL 300 ug/L)
Manganese content: 150 ug/L (MCL 50 ug/L)

Zone Testing Results: (see Appendix)

VANDENBERG VILLAGE CSD Fire Station #51 Test Well


WELL LOCATION MAP

VANDENBERG VILLAGE CSD Old Fire Station #51 Test Well 749 Burton Mesa Blvd., Lompoc, California

Rick Hoffman and Associates Engineering geologists & hydrogeologists

FIGURE

1149 Palomino Road, Santa Barbara, CA 93105 TEL. (805) 569-1911 MOBILE: (805) 895-2246 Email: rickhoffman1@cox.net 1

VANDENBERG VILLAGE CSD Fire Station #51 Test Well

SITE MAP

VANDENBERG VILLAGE CSD Fire Station #51 Test Well 749 Burton Mesa Blvd., Lompoc, California

Rick Hoffman and Associates Engineering Geologists & Hydrogeologists

1149 Palomino Road, Santa Barbara, CA 93105 TEL. (805) 569-1911 MOBILE: (805) 895-2246 Email: rickhoffman1@cox.net **FIGURE**

2

VVLSD Fire Station Test Well #1

Environmental Health Services

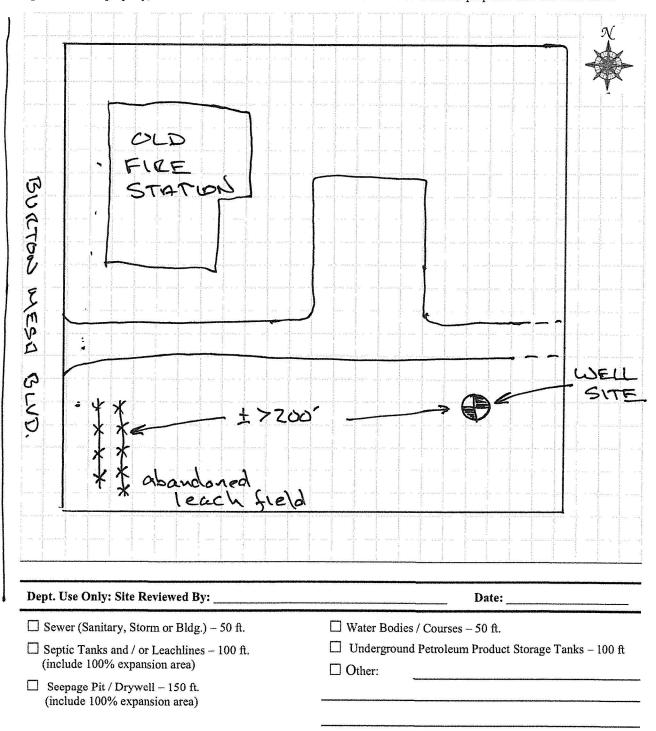
225 Camino del Remedio, Santa Barbara, CA. 93110 ♦(805) 681-4900 2125 S. Centerpointe Pkwy., #333 + Santa Maria, CA 93455-1340 ♦ (805) 346-8460

WATER WELL PERMIT APPLICATION

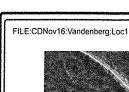
Type of Perm	it (Please check the i	appropriate box below)
--------------	-------------------------------	------------------------

Modification \$740 (3 hrs.) * [4669] Includes the deepening of a well, reperforation, sealing or replacement of well casing. WP # 000 92 4		X	Construction	\$740 (3 hrs.) *	[4669]	New or Replacement well.	FOR OFFICE USE ONLY
Destruction S495 (2 hrs.)* [4668] Abandonnent: The complete filling of a well. District #	-	O	Modification	\$740 (3 hrs.) *	[4669]		
Required Attachments: Plot plan indicating the location of the well with respect to the following items: Property lines. Animal or fowl enclosure, pens, paddocks, stockyards within a 100 foot radius of proposed well site Sewage disposal systems or works carrying or containing sewage or industrial wastes within a 200 foot radius of the proposed well. All perennial, seasonal, natural, or artificial water bodies or watercourses, including location of 100 year floodplain, if applicable. Also Required: the Supplemental Form on page 3, completed in full.		O	Destruction	\$495 (2 hrs.) *	[4668]	Abandonment: The complete filling of a well.	
□ Property lines. □ Animal or fowl enclosure, pens, paddocks, stockyards within a 100 foot radius of proposed well site Access roads and easements (water, sewer, utility, roadway). □ Existing and/or proposed structures. □ Existing wells within a 100 foot radius of the proposed well. □ All perennial, seasonal, natural, or artificial water bodies or watercourses, including location of 100 year floodplain, if applicable. □ Also Required: the Supplemental Form on page 3, completed in full. POWNER Info: Well Owner Name (Required): Cáunty of Santa Barbara St., Santa Barbara, Gen. S&r. Dist. Primary Phone (805) 568–3070 Downer Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner Applicanty Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomine Road, Santa Barbara, California 93105 Street Number and Name Primary Phone: (805) 569–1911 Email: rickhoffmanl@cox.net VELL Location Info: Vell Location Info: Vell Location Info: Vell Location Info: Street Number and Name Street Number and Name City State/Zip Code Trickhoffmanl@cox.net VELL Location Info: Street Number and Name City State/Zip Code Trickhoffmanl@cox.net City State/Zip Code Trickhoffmanl@cox.net Street Number and Name City State/Zip Code Trickhoffmanl@cox.net VELL Location Info: Street Number and Name City State/Zip Code Trickhoffmanl@cox.net City State/Zip Code State/Zip Code Trickhoffmanl@cox.net No Info: State/Zip Code Trickhoffmanl@cox.net No Info: State/Zip Code Trickhoffmanl@cox.net No Info: State/Zip Code Tric							<u> </u>
□ Property lines. □ Animal or fowl enclosure, pens, paddocks, stockyards within a 100 foot radius of proposed well site Access roads and easements (water, sewer, utility, roadway). □ Existing and/or proposed structures. □ Existing wells within a 100 foot radius of the proposed well. □ All perennial, seasonal, natural, or artificial water bodies or watercourses, including location of 100 year floodplain, if applicable. □ Also Required: the Supplemental Form on page 3, completed in full. POWNER Info: Well Owner Name (Required): Cáunty of Santa Barbara St., Santa Barbara, Gen. S&r. Dist. Primary Phone (805) 568–3070 Downer Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner Applicanty Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomine Road, Santa Barbara, California 93105 Street Number and Name Primary Phone: (805) 569–1911 Email: rickhoffmanl@cox.net VELL Location Info: Vell Location Info: Vell Location Info: Vell Location Info: Street Number and Name Street Number and Name City State/Zip Code Trickhoffmanl@cox.net VELL Location Info: Street Number and Name City State/Zip Code Trickhoffmanl@cox.net City State/Zip Code Trickhoffmanl@cox.net Street Number and Name City State/Zip Code Trickhoffmanl@cox.net VELL Location Info: Street Number and Name City State/Zip Code Trickhoffmanl@cox.net City State/Zip Code State/Zip Code Trickhoffmanl@cox.net No Info: State/Zip Code Trickhoffmanl@cox.net No Info: State/Zip Code Trickhoffmanl@cox.net No Info: State/Zip Code Tric	F	<u> Requir</u>	red Attachments:	Plot plan indic	ating the	location of the well with respect to the following	titems:
utility, roadway). Existing and/or proposed structures. Existing wells within a 100 foot radius of the proposed well. All perennial, seasonal, natural, or artificial water bodies or watercourses, including location of 100 year floodplain, if applicable; Also Required: the Supplemental Form on page 3, completed in full. DWNER Info: Well Owner Name (Required): County of Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner		□ Pro	perty lines.			Animal or fowl enclosure, pens, paddocks, stoc	E 1500 2500 2500
Existing wells within a 100 foot radius of the proposed well. Also Required: the Supplemental Form on page 3, completed in full. Also Required: the Supplemental Form on page 3, completed in full. Also Required: the Supplemental Form on page 3, completed in full. Also Required: the Supplemental Form on page 3, completed in full. Well Owner Name (Required): Country of Santa Barbara, Gen. Ser. Dist. Primary Phone (805) 568-3070 Owner Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner				ments (water, sev		industrial wastes within a 200 foot radius of the	proposed well.
Well Owner Name (Required): Country of Santa Barbara, Gen. Ser. Dist. Primary Phone (805) 568-3070 Owner Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner Applicant/ Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomino Road, Santa Barbara, California 93105 Street Number and Name City State/Zip Code Primary Phone: (805) 569-1911 Email: rickhoffman1@cox.net VELL Location Info: Vell Location Address: 749 Burton Mesa Blud., Lompoc, CA 93436 Street Number and Name City State/Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 1034. 44.1. 47.5 Latified 20 26 59 11 Elevation. 340.1 Is parcel located within the service area of a public water system? In No I Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) No I Yes Proposed Depth 800 ft. Well Bore Diam. 16 in. Sealing Material (Check) Sealing Material (Check) Concrete Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:		□ Exi	isting wells within a		of	including location of 100 year floodplain, if app	olicable.
Vell Owner Name (Required): County of Santa Barbara, Gen.SEr.Dist. Primary Phone (805) 568-3070 Owner Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner Applicant/ Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomino Road, Santa Barbara, California 93105 Street Number and Name City State/Zip Code Primary Phone: (805) 569-1911 Email: rickhoffman1@cox.net VELL Location Info: Vell Location Address: 749 Burton Mesa Blvd., Lompoc, CA 93436 Street Number and Name City State/Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road inile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N3624147.5" Latitude: 150 Elevation: 3401 Is parcel located within the service area of a public water system? In No Information A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) No Information Proposed Depth 800 ft. Type: Steel Information Well Bore Diam. 16 in. Type: Steel Information Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:		the	proposed well.			Also Required: the Supplemental Form on page	e 3, completed in full.
Owner Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner Applicant/ Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomino Road, Santa Barbara, California 93105 Street Number and Name City State/Zip Code Primary Phone: (805) 569–1911 Email: rickhoffmanl@cox.net VELL Location Info: Vell Location Address: 749 Burton Mesa Blud., Lompoc, CA 93436 Street Number and Name City State/Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road 1mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34° 41' 47.5" Latitude: 0° 26 'Elevation: 340' Is parcel located within the service area of a public water system? No X Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) No X Yes A-2. If you answered No to the question A-1.: Is public water service available? No Yes Proposed Depth 800 ft. Well Bore Diam. 16 in. Sealing Material (Check) Neat Cement Clay Cement Crout Concrete Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:				0.04	C 4	Raulaus Gas GG Dist	005 560 2070
Street Number and Name City State/Zip Code Complete this section if APPLICANT is other than Well Owner Applicant/ Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomino Road, Santa Barbara, California 93105 Street Number and Name City State/Zip Code Primary Phone: (805) 569-1911 Email: rickhoffman1@cox.net VELL Location Info: Vell Location Address: 749 Burton Mesa Blvd., Lompoc, CA 93436 Street Number and Name City State/Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road 1mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 13 1346'4' 47.5" Latitude: 25 Elevation: 340' Is parcel located within the service area of a public water system? In No IN Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) In No IN Yes A-2. If you answered No to the question A-1.: Is public water service available? In O IYes Proposed Depth 800 ft. Well Bore Diam. 16 in. Type: Steel IN PVC Other Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:							
Applicant/ Project Coordinator Name: Rick Hoffman, Geologist Mailing Address: 1149 Palomino Road, Santa Barbara, California 93105 Street Number and Name City State/Zip Code Primary Phone: (805) 569-1911 Email: rickhoffmanl@cox.net VELL Location Info: Well Location Address: 749 Burton Mesa Blwd., Lompoc, CA 93436 Street Number and Name City State/Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road 1mile to southeast sessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34°41'47.5" w120°26'50" Is parcel located within the service area of a public water system? No X Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) No X Yes A-2. If you answered No to the question A-1.: Is public water service available? No Yes Proposed Depth 800 ft. Well Bore Diam. 16 in. Well Bore Diam. 16 in. Neat Cement Check) Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:	γC	Owner Mailing Address: 1105 Santa Barbara St., Santa Barbara, CA 93101 c/o Mr. Don Grady Street Number and Name City State/ Zip Code					
Mailing Address: 1149 Palomino Road, Santa Barbara, California 93105 Street Number and Name Primary Phone: (805) 569-1911 Email: rickhoffmanl@cox.net WELL Location Info: Well Location Address: 749 Burton Mesa Blwd., Lompoc, CA 93436 Street Number and Name City State / Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road ½mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34°44'47.5" Latitude: Elevation: 340' Is parcel located within the service area of a public water system? No X Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) No X Yes A-2. If you answered No to the question A-1.: Is public water service available? No Yes Proposed Depth 800 ft. Well Bore Diam. 16 in. Sealing Material (Check) Neat Cement Crout Check Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:		-	•				
Street Number and Name Primary Phone: (805) 569-1911 Email: rickhoffmanl@cox.net WELL Location Info: Well Location Address: 749 Burton Mesa Blud., Lompoc, CA 93436 Street Number and Name City State/Zip Code Toss Street (or other information defining the Well location, if applicable): Harris Grade Road mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34°41'47.5" Latitude: Elevation: 340' Is parcel located within the service area of a public water system? No Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) No Yes A-2. If you answered No to the question A-1.: Is public water service available? No Yes Proposed Depth 800 ft. Well Bore Diam. 16 in. Sealing Material (Check) Neat Cement Clay Cement Clay Cement Concrete		Applica	ant/ Project Coordinat	tor Name: Ricl	k Hoff	man, Geologist	
Primary Phone: (805) 569-1911	1	Mailing				anta Barbara, California 93105	***************************************
Well Location Info: Well Location Address: 749 Burton Mesa Blwd., Lompoc, CA 93436 Street Number and Name City State / Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34°41'47.5" Latifude: 26'59" Elevation: 340' Is parcel located within the service area of a public water system? In o I Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) I No I Yes A-2. If you answered No to the question A-1.: Is public water service available? IN I Yes Proposed Depth 800 ft. Well Bore Diam. 16 in. Sealing Material (Check) Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:	,	Street Number and Name City State / Zip Code					
Street Number and Name City State / Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34°41'47.5" Latifude: 47.5 Lati							
Street Number and Name City State / Zip Code ross Street (or other information defining the Well location, if applicable): Harris Grade Road mile to southeast ssessor's Parcel Number (APN): 0 9 7 - 3 7 1 - 0 1 3 N34°41'47.5" Latitude: 0°26'59" Elevation: 340' Is parcel located within the service area of a public water system? No Yes (Identify): Vandenberg Village CSD A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) \(\Delta \) No \(\Delta \) Yes A-2. If you answered No to the question A-1.: Is public water service available? \(\Delta \) No \(\Delta \) Yes Proposed Depth \(\begin{array}{c} 800 & \text{ft.} \\ \text{Vandenberg Village CSD} \) Well Bore Diam. \(\begin{array}{c} 16 & \text{in.} \\ \text{Type:} \(\Delta \) Steel \(\Delta \) PVC \(\Delta \) Other Wall / Gauge \(\subseteq \) SDR 17 \(\text{in.} \) Diameter \(\beta \) 5/8 \(\text{in. Annular Seal Depth } \(\beta \) ft. Neat Cement \(\Delta \) Concrete							
A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) \(\text{ No } \text{ Yes} \) A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ No } \text{ Yes} \) Proposed Depth \(\text{ 800} \) Well Bore Diam. \(\text{ 16} \) Neat Cement Grout \(\text{ Cancete} \) Concrete							
A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) \(\text{No } \text{ Yes} \) A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) Proposed Depth \(\text{ 800} \) Well Bore Diam. \(\text{ 16} \) Well Bore Diam. \(\text{ 16} \) Wall / Gauge \(\text{ SDR } \) Wall / Gauge \(\text{ SDR } \) Additional Work Description: \(\text{ Latitude: } \) A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) \(\text{ No } \text{ Yes} \) A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) Proposed Depth \(\text{ 800} \) Well Bore Diam. \(\text{ 16} \) Additional Work Description: \(\text{ Wall / Gauge } \text{ SDR } \) Additional Work Description: \(\text{ Month of the Public Water System (i.e., do you have a meter?)} \(\text{ No } \text{ Yes} \) A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) A-3. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) A-3. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) A-4. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) Both A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) Both A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ No } \text{ Yes} \) Both A-3. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ No } \text{ Yes} \) A-3. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text	the state of the s						
A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) \(\text{ No } \text{ Yes} \) A-2. If you answered No to the question A-1.: Is public water service available? \(\text{ No } \text{ Yes} \) Proposed Depth \(\text{ 800} \) Well Bore Diam. \(\text{ 16} \) Well Bore Diam. \(\text{ 16} \) Wall / Gauge \(\text{ SDR } \) Wall / Gauge \(\text{ SDR } \) Additional Work Description: \(\text{ Sing Information} \) Additional Work Description:							
A-1. If you answered Yes to question A.: Are you connected to the Public Water System (i.e., do you have a meter?) \[\text{No} \forall \text{Yes} \] A-2. If you answered No to the question A-1.: Is public water service available? \[\text{No} \text{ No} \text{ Yes} \] Proposed Depth \[\begin{array}{c} 800 & \text{ ft.} \\ \text{Well Bore Diam.} & 16 & \text{ in.} \\ \text{Sealing Material (Check)} \] Neat Cement \[\text{Casing Information} \] Wall / Gauge \[\text{SDR 17} & \text{ in.} \] Additional Work Description: \[\text{Wall / Gauge SDR 17} & \text{ in. Annular Seal Depth } \[\text{50} & \text{ ft.} \] Additional Work Description: \[\text{Vertical Solutions} & Vert							
A-2. If you answered No to the question A-1.: Is public water service available? Proposed Depth 800 ft. Well Bore Diam. 16 in. Sealing Material (Check) Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Madditional Work Description:							
Well Bore Diam. 16 in. Sealing Material (Check) □ Neat Cement □ Clay □ Concrete Type: □ Steel ☑ PVC □ Other Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:							
Well Bore Diam. 16 in. Sealing Material (Check) □ Neat Cement □ Clay □ Concrete Type: □ Steel ☑ PVC □ Other Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. Additional Work Description:	Proceed Danta 800 A						
Sealing Material (Check) Wall / Gauge SDR 17 in. Diameter 8 5/8 in. Annular Seal Depth 50 ft. □ Neat Cement □ Clay Additional Work Description: ☑ Cement Grout □ Concrete		-	-		Stant M		
□ Neat Cement □ Clay Additional Work Description: □ Concrete				3		***************************************	llar Seal Denth 50 ft
□ Concrete		Neat (Cement	Additiona			
INDIE. A 30 ft, annutat scal is required for all wells.	X	l Ceme	ent Grout Concre	rete		as substitutional control and control and control as a substitution of the control and con	

LEGAL DECLARATION					
LICENSED CONTRACTOR DECLARATION I hereby affirm that I am licensed under the provisions of Chapter 9 (commencing with Sec. 7000), Division 3 of the Business and Professions Code					
(B&PC) as a well drilling contractor (C-57 license) and such license is in full force and effect.					
Mr. Greg Filipponi on file Mar. 17, 2017 Print Name of Driller Signature of Driller					
Print Name of Driller Signature of Driller Lic. No.: C57-432680 Primary Telephone 805-466-1271 Other Phone: 805-610-3341					
Business Name: Filipponi & Thompson Drill Address P.O. Box 845, Atascadero, CA 93423					
(Complete A or B)					
A. WORKERS' COMPENSATION DECLARATION I hereby affirm that (check the applicable box):					
☐ I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the					
Labor Code, for the performance of the work for which this permit is issued.					
☐ I have and will maintain workers' compensation insurance, as provided for by Section 3700 of the Labor Code, for the performance of work for which this permit is issued. My insurance carrier and policy number are:					
Carrier on file Policy No					
Applicant Signature Date					
B. CERTIFICATION OF EXEMPTION FROM WORKERS' COMPENSATION INSURANCE					
I certify that in the performance of work for which this permit is issued, I shall not employ any person in a manner so as to become subject to the					
Workers' Compensation Laws of California.					
Applicant Signature Cicle Holling Date Mar. 17, 2017					
Notice to Applicant: If, after making this Certificate of Exemption, you should become subject to the Workers' Compensation provisions of the Labor Code, you must forthwith comply with such provisions or this permit shall be deemed revoked.					
When signed by the Environmental Health Specialist, this application shall be deemed a permit only for the work described and is not a					
installation, waste discharge requirements, land use clearance, grading) may also be required from other agencies. THIS PERMIT SHALL EXPIRE upon completion of the task authorized or one year from date of issuance, whichever occurs first. No changes from the approved plan are permitted without prior written approval by Environmental Health Services. Final clearance will not be issued until all fees are paid and a copy of the drillers log is submitted to Environmental Health Services.					
I hereby agree to comply with all regulations of the County of Santa Barbara pertaining to well construction, repair, modification, destruction and inactivation. The property owner, well driller, or agent will furnish Environmental Health Services a copy of a completed well log upon completion of well construction.					
I certify that I have read this application and declare under penalty of perjury that the information contained herein is true, correct and complete. I hereby authorize representatives of Environmental Health Services to enter the premises for the purpose of inspecting the site and work described herein for compliance with county requirements.					
REQUIRED INSPECTIONS / FINAL CLEARANCE : After permit approval, and prior to covering any components, an inspection must be scheduled directly with the approving Environmental Health Specialist at least two (2) business days in advance for:					
✓ The sealing of the annular space on a well;					
✓ The destruction of wells;					
Any operation stipulated on the permit to address special or unusual conditions.					
Receipt of driller's well log.					
Signed CICK HOFFWAN Techniques Har. 7,7017 Applicant (Print Name) Applicant (Print Name)					
APPLICATION DISPOSITION: CApproved Denied					
Signed Deouve Talling 3/23/17 Environmental Health Specialist 3/23/17					
FOR DEPARTMENT USE ONLY Fixed Fee Rec'd: by: Velculu Date: 3-22-17 Amt: \$ 740 \(\) Credit Card: \(\) Credit Card: \(\) Check/Receipt/Trans. No.: \(\) \					
Date plans resubmitted (1)(2)(2)					
Permit Conditions: Contact Etts at least 48 hrs prior to seal					
Final Construction Approved by: Date:					
Final Clearance by: Date:					
Copy Required at Assessor's Office Copy Required at Water District Office					


WCSD Fire Station Test Well #1

Well Permit Application Plot Plan


(Scale 1/4" Block = 20 ft.)

Permit	#:					
APN:	0	77	 37	1-	01	3

Indicate below the exact location of the proposed well with respect to the following items within 200 ft. of the proposed well: property lines, access roads and easements; existing/proposed structures (surface and subsurface); existing wells; existing/proposed industrial, hazardous, solid waste systems, works or tanks; petroleum product system works or tanks: animal enclosures and/or animal waste storage areas; agricultural operations; watercourses, 100-yr. flood plain and drainage patterns of the property; and well site elevations. Show the actual distance between the proposed well and these items.

EHS 46-1b (Rev. 4/27/15)

VVCSD Fire Station Test Well #1

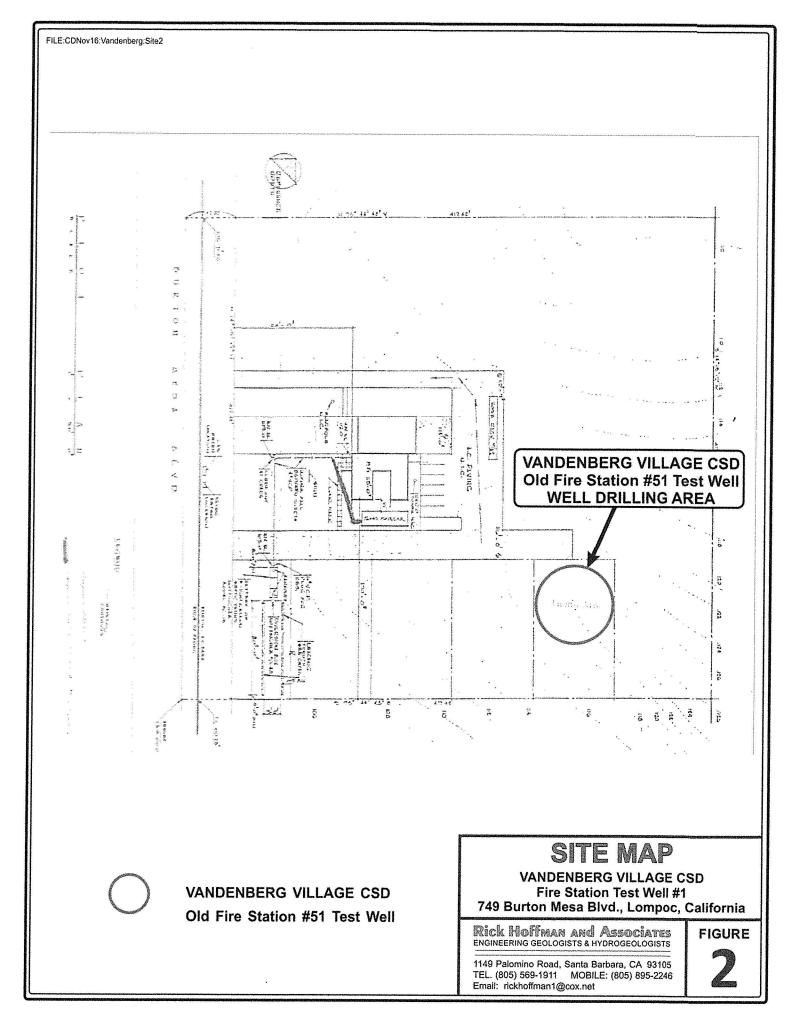
USGS 344140-1202723 (7)

Vangenburg Well Field

feet meters

_3000 =900

VANDENBERG VILLAGE CSD
Old Fire Station #51 Test Well


WELL LOCATION MAP

VANDENBERG VILLAGE CSD Old Fire Station #51 Test Well 749 Burton Mesa Blvd., Lompoc, California

Rick Hoffman and Associates Engineering geologists & hydrogeologists

1149 Palomino Road, Santa Barbara, CA 93105 TEL. (805) 569-1911 MOBILE: (805) 895-2246 Email: rickhoffman1@cox.net **FIGURE**

1

Department

RING In Payment of W1200 - Learnit Cepylic APN-097-321-013 Lot 749 Received from FACK HOPENAU OF ASSOC for Coof SB/Gen SAVILLA Benton Meson Date_3/23

CHECK CASH CREDIT CARD Received original of the above numbered receipt SIGNATURE OF PAYOR

AC-147

1380

Dollars \$_

and

くろうろう

100

62-15/311 1380

RICK HOFFMAN & ASSOCIATES DON FREDERICK HOFFMAN GEORGETTE MARIE HOFFMAN

18 Noc. 2017

18 740°B

Security Features Details on Back. Dollars Order of South Barbara Cornty EHS seven hundred forty ochoo

The Bank of New York Mellon 1 Wall Street New York, NY 10286

Schwab One®

クシング

08612 #031100157# 7025183133#

For WICSP Fire Stat. [Dell

Rick Hoffman and Associates

1149 Palomino Road, Santa Barbara, CA 93105

TELEPHONE (805) 569-1911 EMAIL: rickhoffman1@cox.net

ENGINEERING GEOLOGISTS & HYDROGEOLOGISTS GROUNDWATER EXPLORATION and ANALYSIS RG #3740 EG #1135 HG #448

FILE:GF17Mar:SBPermitVVCSD

March 18, 2017
Santa Barbara County
Environmental Health Services

2125 South Centerpointe Parkway Santa Maria, California 93455-1340

Attn: Ms. Deanna Talerico, Senior Environmental Health Specialist

Re: Water Well Drilling Permit Application

Proposed Vandenberg Village CSD Fire Station #51 Test Well Project

749 Burton Mesa Road Lompoc, California

Assessor's Parcel Number 097-371-013

Dear Ms. Talerico:

I am herewith submitting a Water Well Drilling Permit Application, Well Location Map, and other supporting graphics for your review and approval. The new test well is to be located in the south-central portions of the above described parcel, in the unincorporated portion of the Santa Barbara County, California (see Figure 1). The Vanderberg Village Community Services District (VVCSD) has secured a license agreement from Santa Barbara County (Real Property Division) to drill and complete a Test Well on property they own that is now an abandoned fire station facility. The proposed Test Well #1 will be used to analyze the hydrologic conditions of this area for the eventual drilling of a larger production water well to serve the customers of the VVCSD at a later time. The proposed 8 inch diameter PVC well will be tested for both water quanity (flow capacity) and water quality. When the testing of the new well is completed, it will be securely capped and used in the future as a monitoring well.

The is a now abandoned leach field system located near the southwest corner of the parcel, approximately 200 feet (or more) from the proposed well site. No other nearby septic disposal systems or other potential sources of contamination are known to exist within 200 feet of the well site. F & T Drilling Company will be the Contractor for this project. The drilling contractor intends to move onto the new will site in the next 2 to 3 weeks. Please let me know if you wish to inspect the well site or if you can approve of it via review on Google Earth. I have sent along a paper copy of the Water Well Drilling Permit Application along with payment via US Mail, which you should receive in a few days.

.....

If you have any questions regarding these Well Permit Applications, please feel free to contact me. I look forward to seeing you soon.

Sincerely,

Mr. Rick Hoffman

Certified Engineering Geologist & Hydrogeologist

Rich Hoffman

State of California

RG #3740 EG #1135 HG #448

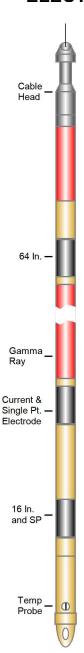
enclosures

cc: Mr. Joe Barget, District Manager, Vandenberg Village Community Services District

225 Camino Del Remedio, Santa Barbara, CA. 93110 ◆(805) 681-4900 2125 S. Centerpointe Pkwy., #333 ◆ Santa Maria, CA 93455-1340 ◆ (805) 346-8460

ENVIRONMENTAL HEALTH SERVICES DIVISION WELL PERMIT FIELD INVESTIGATION RECORD

Well Permit Application Received: Date: 3/23/17	Well Permit Number: SR We 1924			
Owner	APNO97371013			
Site Investigation by: Drawinco	Date: 3/23/17			
Findings: (Check Applicable Boxes and Give Clearance)				
Overhead Powerlines	☐ Animal Enclosures (100 Feet)			
Sewer Lines (> 50(cei)	Creek/Watercourse (100 yr Floodplain)			
Leachfield/Septic Tank 7200 ++ (> 100 feet)	Petroleum Tank/Pipeline			
Cesspool/Drywell (> 150 feet)	□ Other			
Comments: Old suptic lines	abandoned now, All			
over 700 f	+ from asp proposed			
Construction Inspection Record:				
Date: Driller	☐ Destruction:			
Registered Professional	Casing Depth Below Grade: Depth of Seal:			
Casing Information:	Borehole:			
Diameter Gage	Total Depth of Well:			
☐ Steel ☐ Standard linepipe ☐ Structural Steel	Annular Seal:			
	(20' Ag & SPWS; 50' >5 conn. & commercial)			
□ ABS □ PVC □ Standard 14 NSF	Well Bore Diameter:			
☐ Other:	0. 11 - 34 11			
	Sealing Material: (6 Sack concrete, neat cement, sand-cement, Bentonite, thermoset plastic concrete)			
<u>Casing Schedule:</u> <u>TYPE</u> <u>Conductor Casing</u> :	Amount:			
	Method of Pour: ☐ Gravity or ☐ Pumper			
- = Sealing Material: - = Conductor Casing: - = Depth: Diameter	Use of Tremie Pipe: Yes N/A Required if wet or > 30 ft deep			



Witnessed By

ELECTRIC - GAMMA RAY-TEMPERATURE LOG

Test Borehole Phone: (888) 908-5226 Fax: (661) 505-6561 · Web: www.boredata.com Email: ccorbell@boredata.com Filing No. COMPANY Filipponi and Thompson WELL Vandenberg Village CSD Old Fire Station #51 Test Well FIELD Lompoc STATE California COUNTY Santa Barbara LOCATION: OTHER SERVICES: 749 Burton Mesa Blvd None APN: 097-371-013 Job No. 2336 TWP: RGE: LAT.: 34.69669 LONG .: Permanent Datum: Elevs.: K.B. Ft. **Ground Level** Elev.: 0 Ft. Above Perm. Datum D.F. Ft. Log Measured From: **Ground Level** Drilling Measured From: **Kelly Bushing** G.L. Ft. One Date May 08, 2017 Depth-Driller Ft Ft Ft Ft 803 Ft Ft Ft Ft Depth-Logger 804 Ft Ft Ft Ft Top Logged Interval Btm Logged Interval Ft Ft Ft Ft 804 Ft Ft Casing-Driller Ft Ft 18 In @ In @ In @ In @ Ft Ft Casing - Logger In@Ft Ft In @ Ft 18 In @ In @ In @ Bit Size 9.875 ln @ In @ Ft In @ Ft Ft 803 In @ Time On Bottom 18:00 Type Fluid in Hole **Bentonite** Viscosity pH Fluid Loss ml ml ml ml Source of Sample Circ °F °F Rm @ Mea. Temp 10.2 75 Rmf @ Mca. Tcmp 10.2 °F @ °F @ @ °F @ 75 °F °F °F Rmc @ Mea. Temp @ °F @ @ Source Rmf Rmc Meas °F °F Rm @ BHT @ @ @ @ Hr Hr Time Since Circ. 1.5 Hr Hr Max. Rec. Temp. 82.3 °F °F °F °F Location Van No. BD-1 Recorded By Craig Corbell

ELECTRIC - GAMMA RAY-TEMPERATURE LOG TOOL

SPONTANEOUS POTENTIAL LOGS:

SP Logs record potentials or voltages developed between the borehole fluid and the surrounding formation and are representations of lithology and water quality. Recording of SP logs are limited to water-filled or mud-filled open holes.

NORMAL RESISTIIVITY LOGS:

Normal Resistivity Logs record the electrical resistivity of the borehole environment with lower resistivities indicative of clays and higher resistivities being sands and gravels. Normal resistivity logs are affected by bed thickness, Borehole diameter and borehole fluid.

SINGLE POINT RESISTIVITY LOGS:

Single Point Resistivity Logs record the electrical resistance from points within the borehole to an electrical ground at land surface. Single-point resistance logs are useful in the determination of lithology, water quality, and location of fracture zones.

GAMMA RAY LOGS:

Gamma Ray Logs record the amount of natural gamma radiation emitted by the rocks surrounding the borehole. The most significant naturally occurring sources of gamma radiation are potassium 40 and daughter products of the uranium and thorium decay series. Clay and shale bearing rocks commonly emit relatively high gamma radiation because they include weathering products of potassium feldspar and mica and tend to concentrate uranium and thorium by ion absorption and exchange.

TEMPERATURE LOGS:

Temperature Logs record the water temperature in the borehole. Temperature logs are useful for delineating water-bearing zones and identifying vertical flow in the borehole between zones of differing hydraulic head penetrated by wells. Borehole flow between zones is indicated by temperature gradients that are less than the regional geothermal gradient.

ELECTRIC LOG SPECIFICATIONS:

 Diameter
 1.73 Inches

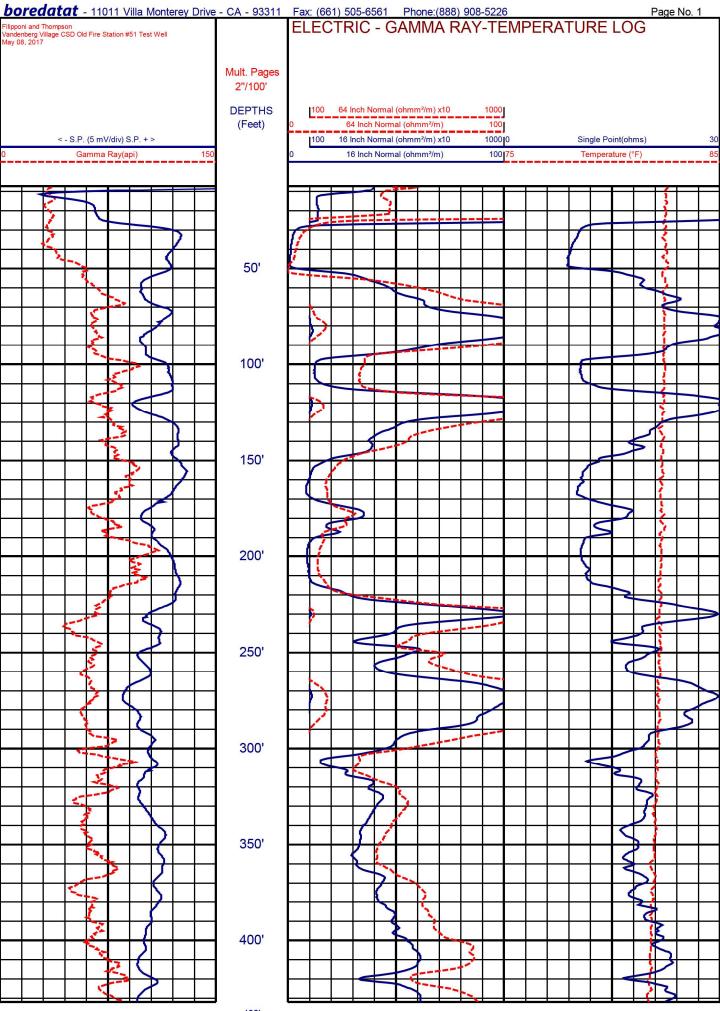
 Length
 8.37 Feet

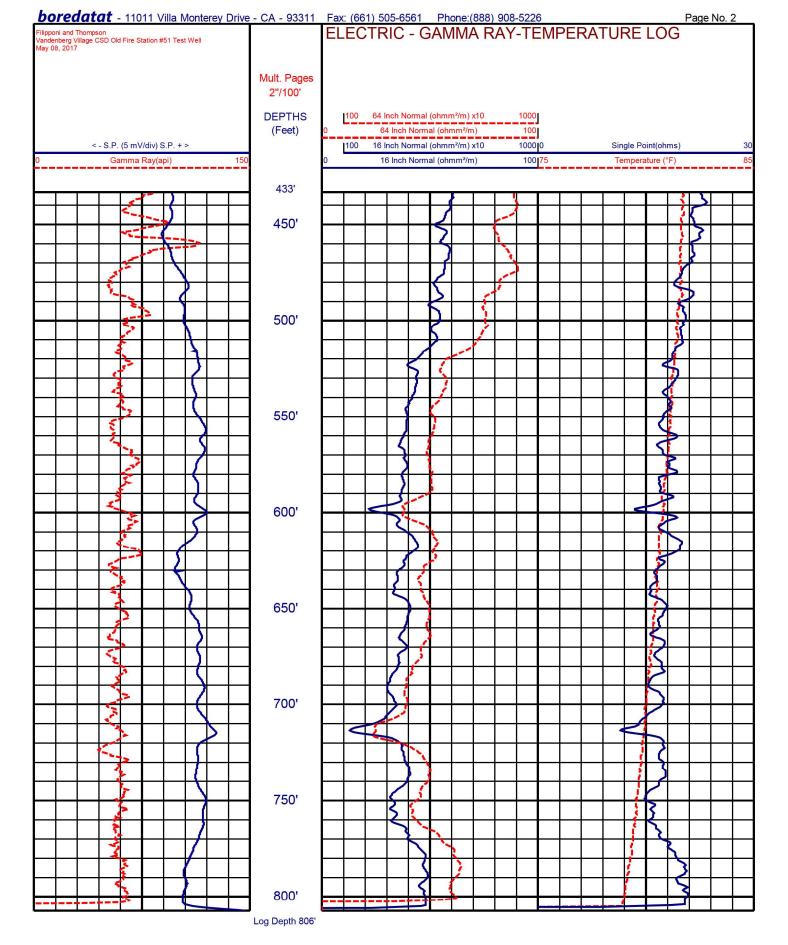
 Weight
 21.7 Lbs.

 Max. Temp
 158° F

Resist. Range 0 - 10,000 ohm-m

Gamma Ray 1.97 inches long x .98 inches diameter


Scintillation crystal


NOTICE

All interpretations are opinions based on inferences from electrical and other measurements and we do not guarantee the accuracy or correctness of any verbal or written interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by one of our officers, agents or employees. These interpretations are also subject to our General Terms and Conditions as set out in our current Price Schedule.

REMARKS

REMARKS

State of California

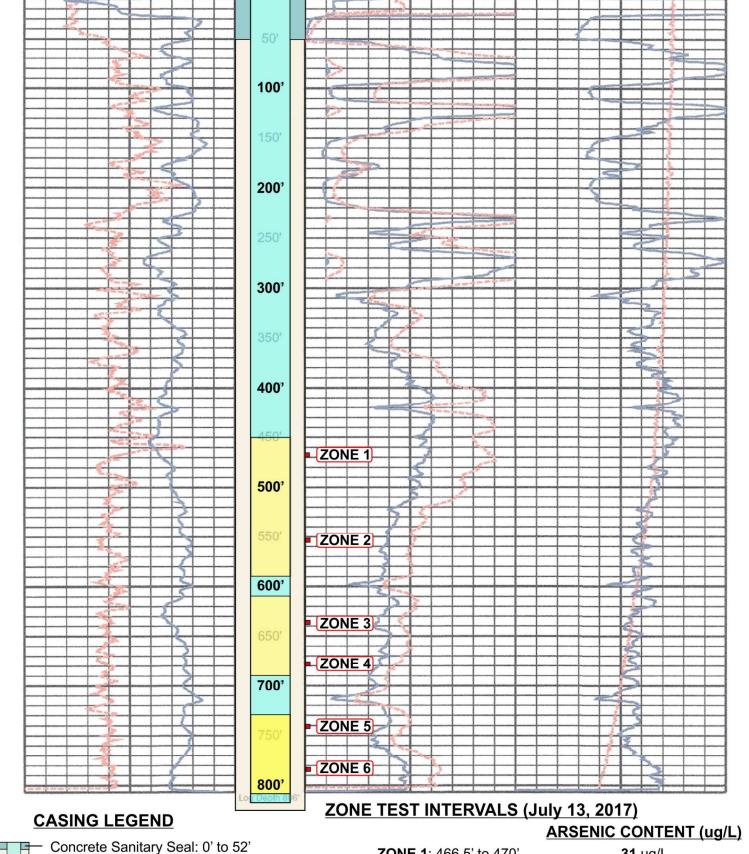
Well Completion Report

WCR Form Submitted 06/02/2017 WCR2017-001500

Owner's Well Number	Date Work Began 05.	5/04/2017 Date Work Ended 05/15/2017							
Local Permit Agency	Santa Barbara County Environmental Health Services	para County Environmental Health Services							
Secondary Permit Ager	ncy Permit Number C	0001924 Permit Date 03/23/2017							
Well Ov	vner (must remain confidential pursuant to Water Code	13752) Planned Use and Activity							
Name JOE BARG	GET VANDENBERG VILLAGE CSD	Activity New Well							
Mailing Address 3	3757 CONSTILLATION ROAD	Planned Use Water Supply Domestic							
City LOMPOC	State CA Zip	93436							
	Well Locati	ion - All Bridge and							
Address 749 BUF	RTON MESA BLVD	APN 097-371-013							
City LOMPOC	Zip 93436 County Santa Barbara								
Latitude 34	41 47.5 N Longitude -120 26	59 W Range							
Deg. Dec. Lat.	Min. Sec. Deg. Min. Dec. Long.	Sec. Section Baseline Meridian							
Vertical Datum	Horizontal Datum WGS84	Ground Surface Elevation							
Location Accuracy	Location Determination Method	Elevation Accuracy Elevation Determination Method							
	Borehole Information	Water Level and Yield of Completed Wall							
Orientation Vertica	al Specify	Depth to first water (Feet below surface)							
Drilling Method	Direct Rotary Drilling Fluid Bentonite	Depth to Static Water Level 297 (Feet) Date Measured 05/15/2017 Estimated Yield* 400 Test Type Air Lift							
Total Depth of Boring	840 Feet	Test Length 12 Total Drawdown (Feet							
Total Depth of Comple	eted Well 820 Feet	*May not be representative of a well's long term yield.							

		Geologic Log - Free Form				
Depth from Surface Feet to Feet		Description				
0	25	BROWN SAND				
25	28	WHITE SANDY CLAY				
28	105	LIGHT BROWN SAND WITH COURSE SANDS				
105	108	GRAY CLAY .				
108	145	CHATTERING SAND WITH COURSE SAND AND SOME CLAY				
145	173	GRAY CLAY WITH SAND				
173	190	SAND AND GRAVEL				
190	248	SANDY GRAY CLAY				
248	308	SAND AND GRAVEL				
308	310	CLAY				
310	510	SAND WITH COARSE SANDS				
510	512	FINE AND COARSE SANDS WITH REDWOOD				
512	518	FINE AND COARSE SANDS				
518	525	FINE AND COARSE SANDS WITH SILTY BROWN SHALE LAYERS				
525	554	DARK GRAY SANDS				
554	561	GRAY SANDS WITH SEA SHELLS				
561	746	GRAY SANDS WITH SOME SMALL GRAVELS				
746	812	GRAY SANDS WITH SOME COARSE SAND				
812	817	SILTY BROWN CLAY				
817	840	FINE GRAY SAND/ SILT				

					Casings	1"				
Casing #	Sur	from face o Feet	Casing Type	Material	Casings Specifications	Wall Thickness (Inches)	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)	Description
1	0	52	Conductor or Fill Pipe	Low Carbon Steel	Grade: ASTM A53	0.25	18			
2	52	450	Blank	Other	N/A	0.25	18	100		PVC SDR 17
2	450	590	Screen	Other	N/A	0.25	18	Saw Cut	0.04	PVC 8 INCH SDR17
2	590	610	Blank	Other	N/A	0.25	18	Saw Cut		PVC 8 INCH SDR17
2	610	690	Screen	Other	N/A	0.25	18	Saw Cut	0.04	PVC 8 INCH SDR17
2	690	730	Blank	Other	N/A	0.25	18	Saw Cut		PVC 8 INCH SDR17
2	730	810	Screen	Other	N/A	0.25	18	Saw Cut	0.04	PVC 8 INCH SDR17
2	810	820	Blank	Other	N/A	0.25	18	Saw Cut		PVC 8 INCH SDR17


			An	nular Material	
Sur	face to Feet	Fill	Fill Type Details	Filter Pack Size	Description
0	50	Cement	10.3 Sack Mix		
50	840	Other Fill	See description.	LAPIS #3	LAPIS #3

Other Observations:

		Borehole Specifications
Su	th from rface to Feet	Borehole Diameter (inches)
0	52	28
52	840	16

	Certific	cation Statement		
I, the undersigned, certify	that this report is complete ar	nd accurate to the best of my knowle	edge and belief	
Name	FILIPPON	NI-THOMPSON DRILLING	INC	
Perso	n, Firm or Corporation		Consumer Page Combine (Sections assessment Sections of	MINISTER BANKERS (NAVIOUS AND
P	D BOX 845	ATASCADERO	CA	93423
-	Address	City	State	Zip
Signed Ned	2 m. Chon		017	432680
C-57 L	censed Water Well Contr	actor Date Sig	ned C-57	License Number

			DWR	Jse On	ly			
-		Site N	lumber / S	tate Wel	l Numb	er		mingraphic
1	1		N		T	1	-	W
La	titude De	g/Min/Se	ec	1	Longitu	ide Deg/l	Vin/Sec	
TRS:								
APN:								

Concrete Sanitary Seal: 0' to 52'
8" SDR 17 PVC Blank Casing
8" SDR 17 PVC Well Screen w/0.040" slots
16" diameter Bore Hole: annulus filled with
Lapis #3 from 50' to 830'

File:CD18Jan:VandenbergWellProfileFig3

ZONE 1: 466.5' to 470'31 ug/LZONE 2: 551.5' to 554'21 ug/LZONE 3: 634.5' TO 638'24 ug/LZONE 4: 676.5' TO 680'18 ug/LZONE 5: 739.5' to 743'32 ug/LZONE 6: 781.5' to 785'4.3 ug/L

WELL CONSTRUCTION PROFILE

Vandenberg Village CSD - Fire Station Test Well Project 749 Burton Mesa Blvd., Lompoc, California

Rick Hoffman and Associates Engineering geologists & hydrogeologists

Tel. (805) 569-1911 MOBILE: (805) 895-2246 Email: rickhoffman1@cox.net

FIGURE

3

TEST PUMPING DATA

JUNE 1, 2017

CONSTANT DISCHARGE TEST Vandenberg Village CSD Fire Station #51 Test Well

WELL OWNER:	Vandenberg Village CSD
WELL NAME:	Fire Station #51 Test Well
DATE OF TEST PUMPING PROCEDURE:	June 1, 2017
DEPTH OF WELL:	820 feet
DEPTH OF PUMP SETTING:	60 horsepower pump set at 441 feet
YIELD METHOD:	calibrated flow meter
TECHNICIAN:	F&T Drilling Company
DATUM POINT:	top of casing

DATE	TIME	TIME	FLOW	WATER LEVEL	DRAWDOWN	REMARKS
		SINCE	RATE	below top	(feet)	
		START	(gpm)	of casing	(pumping level	
		(min.)	(0, 7	(feet)	minus SWL)	
6/1/17	9:30	0	0	300.0	0.0	static water level
	9:32	2	400	324.5	24.5	water clear, no odor or sediment
	9:34	4	400	324.8	24.8	
	9:36	6	400	325.1	25.1	
	9:38	8	400	325.2	25.2	
	9:40	10	400	325.2	25.2	
	9:45	15	400	325.4	25.4	
	9:50	20	400	325.5	25.5	
	9:55	25	400	325.6	25.6	
	10:00	30	400	325.7	25.7	
	10:05	35	400	325.8	25.8	
	10:10	40	400	325.9	25.9	
	10:15	45	400	326.0	26.0	
	10:20	50	400	326.0	26.0	
	10:25	55	400	326.0	26.0	
	10:30	60	400	326.0	26.0	
	10:45	75	400	326.1	26.1	
	11:00	90	400	326.1	26.1	
	11:15	105	400	326.2	26.2	
	11:30	120	400	326.2	26.2	
	11:45	135	400	326.3	26.3	
	12:00	150	400	326.2	26.2	
	12:15	165	400	326.4	26.4	
	12:30	180	400	326.5	26.5	water sample: Ar = 28 ug/L
	12:45	195	400	326.5	26.5	·
	13:00	210	400	326.5	26.5	
	13:15	225	400	326.5	26.5	
	13:30	240	400	326.5	26.5	end of constant discharge test
						g and
		1				

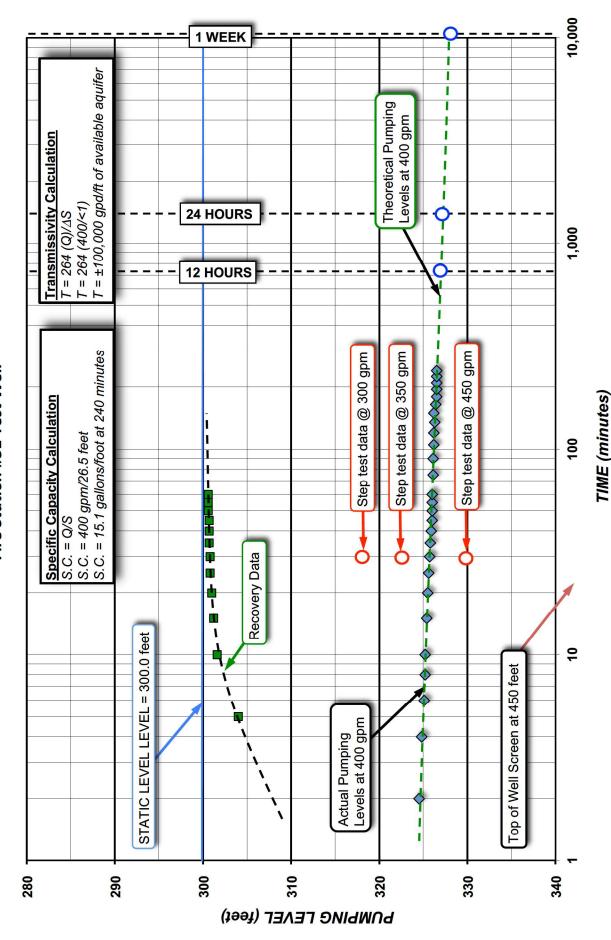
RECOVERY TEST

Vandenberg Village CSD Fire Station #51 Test Well

WELL OWNER:

WELL NAME:

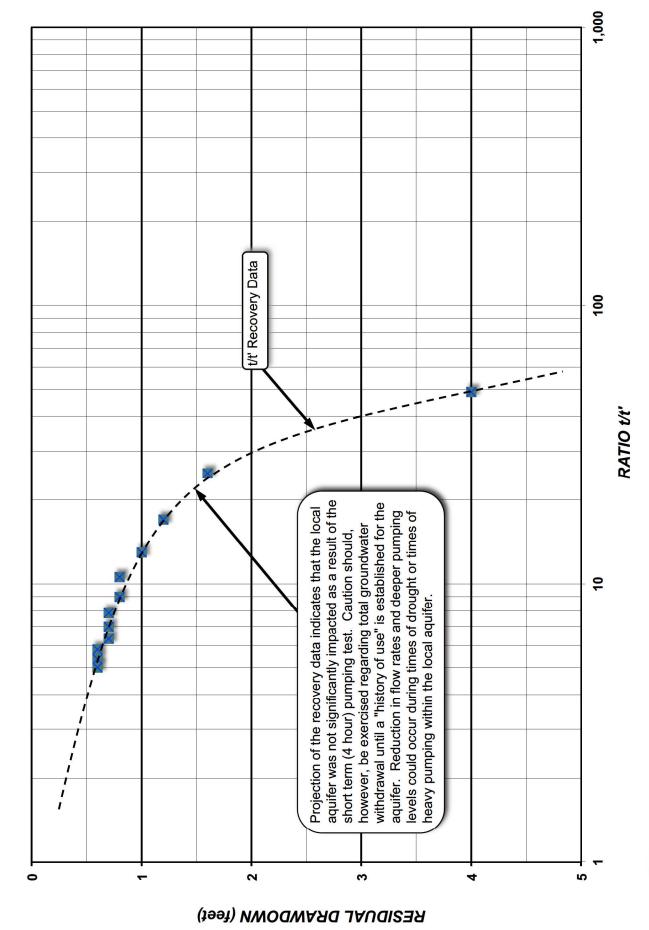
ORIGINAL STATIC WATER LEVEL (in feet):


DEPTH OF WELL (in feet):

DATE | TIME | TIME SINCE | TIME SINCE END | RATIO | WATER | RESIDUAL | Remarks

	(minutes) t	OF TEST (minutes) t'	t/t'	WATER LEVEL (feet)	RESIDUAL DRAWDOWN (feet)	Remarks
13:30	240	0		326.6	26.6	Start of Recovery Test
13:35	245	5	49.0	304.0	4.0	
13:40	250	10	25.0	301.6	1.6	
13:45	255	15	17.0	301.2	1.2	
13:50	260	20	13.0	301.0	1.0	
13:55	265	25	10.6	300.8	0.8	
14:00	270	30	9.0	300.8	0.8	
14:05	275	35	7.9	300.7	0.7	
14:10	280	40	7.0	300.7	0.7	
14:15	285	45	6.3	300.7	0.7	
14:20	290	50	5.8	300.6	0.6	
14:25	295	55	5.4	300.6	0.6	
14:30	300	60	5.0	300.6	0.6	end of recovery test
	13:35 13:40 13:45 13:50 13:55 14:00 14:05 14:10 14:15 14:20 14:25	13:35 245 13:40 250 13:45 255 13:50 260 13:55 265 14:00 270 14:05 275 14:10 280 14:15 285 14:20 290 14:25 295	13:35 245 5 13:40 250 10 13:45 255 15 13:50 260 20 13:55 265 25 14:00 270 30 14:05 275 35 14:10 280 40 14:15 285 45 14:20 290 50 14:25 295 55	13:35 245 5 49.0 13:40 250 10 25.0 13:45 255 15 17.0 13:50 260 20 13.0 13:55 265 25 10.6 14:00 270 30 9.0 14:05 275 35 7.9 14:10 280 40 7.0 14:15 285 45 6.3 14:20 290 50 5.8 14:25 295 55 5.4	13:35 245 5 49.0 304.0 13:40 250 10 25.0 301.6 13:45 255 15 17.0 301.2 13:50 260 20 13.0 301.0 13:55 265 25 10.6 300.8 14:00 270 30 9.0 300.8 14:05 275 35 7.9 300.7 14:10 280 40 7.0 300.7 14:15 285 45 6.3 300.6 14:20 290 50 5.8 300.6 14:25 295 55 5.4 300.6	13:35 245 5 49.0 304.0 4.0 13:40 250 10 25.0 301.6 1.6 13:45 255 15 17.0 301.2 1.2 13:50 260 20 13.0 301.0 1.0 13:55 265 25 10.6 300.8 0.8 14:00 270 30 9.0 300.8 0.8 14:05 275 35 7.9 300.7 0.7 14:10 280 40 7.0 300.7 0.7 14:15 285 45 6.3 300.7 0.7 14:20 290 50 5.8 300.6 0.6 14:25 295 55 5.4 300.6 0.6

HYDROLOGIC CALCULATION GRAPH


Fire Station #51 Test Well

Rick Hoffman and Associates 149 Palomino Road, Santa Barbara, CA 93105 TELEPHONE (805) 569-1911 EMAIL: rickhoffman1@cox.net

ENGINEERING GEOLOGISTS & HYDROGEOLOGISTS GROUNDWATER EXPLORATION and ANALYSIS RG #3740 EG #1135 HG #448

t/t' RATIO vs. RESIDUAL DRAWDOWN GRAPH Fire Station #51 Test Well

Rick Hoffman and Associates 1149 Palonino Road, Santa Barbara, CA 93105 TELEPHONE (805) 569-1911 EMAIL: rickhofman1@cox.net

ENGINEERING GEOLOGISTS & HYDROGEOLOGISTS
GROUNDWATER EXPLORATION and ANALYSIS
RG #3740 EG #1135 HG #448

June 21, 2017

Vandenberg Village CSD Lab ID : SP 1706534 3757 Constellation Road Customer : 2-14885 Lompoc, CA 93436

Laboratory Report

Introduction: This report package contains total of 33 pages divided into 3 sections:

Case Narrative (4 pages): An overview of the work performed at FGL.

Sample Results (8 pages): Results for each sample submitted.

Quality Control (21 pages): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
Travel Blank	05/31/2017	05/31/2017	SP 1706534-000	LBW
Old Fire Station Test Well	05/31/2017	05/31/2017	SP 1706534-001	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	06/01/2017:208120 All analysis quality controls are within established criteria.
	06/01/2017:206464 All preparation quality controls are within established criteria.
200.8	06/01/2017:208127 All analysis quality controls are within established criteria.
	06/01/2017:206457 All preparation quality controls are within established criteria, except: The following note applies to Aluminum, Selenium: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
245.1	06/02/2017:208134 All analysis quality controls are within established criteria.
	06/02/2017:206503 All preparation quality controls are within established criteria.

Organic QC

Lab ID : SP 1706534 Customer : 2-14885

504	06/02/2017:206506 All preparation quality controls are within established criteria.
504.1	06/05/2017:208138 All analysis quality controls are within established criteria.
505	06/03/2017:208115 All analysis quality controls are within established criteria.
	06/02/2017:206406 All preparation quality controls are within established criteria.
507	06/07/2017:208349 All analysis quality controls are within established criteria.
	06/05/2017:206565 All preparation quality controls are within established criteria, except: The following note applies to Metribuzin: 410 Relative Percent Difference (RPD) not within Maximum Allowable Value (MAV). Data was accepted based on the LCS or CCV recovery.
515.3	06/08/2017:208448 All analysis quality controls are within established criteria.
	06/06/2017:206667 All preparation quality controls are within established criteria.
524.2	06/01/2017:208289 All analysis quality controls are within established criteria, except: The following note applies to 1,1,2,2-Tetrachloroethane, Trichlorotrifluoroethane F-113, 1,2,3- Trichlorobenzene, 1,2-Dichlorobenzene, 1,4-Dichlorobenz: 360 CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted. 06/01/2017:206661 All preparation quality controls are within established criteria, except: The following note applies to Bromomethane (Methyl Bromide), Chloroethane (Ethyl Chloride), Vinyl Chloride, Freon-11: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. The following note applies to Naphthalene: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
524MTCP	06/02/2017:208192 All analysis quality controls are within established criteria.
524M-TCP	06/02/2017:206561 All preparation quality controls are within established criteria.
531.1	06/08/2017:208517 All analysis quality controls are within established criteria.
	06/07/2017:206733 All preparation quality controls are within established criteria.
547	06/02/2017:208073 All analysis quality controls are within established criteria.
	06/02/2017:206474 All preparation quality controls are within established criteria.
548.1	06/09/2017:208479 All analysis quality controls are within established criteria.
	·

June 21, 2017 **Vandenberg Village CSD**

Organic QC

Lab ID

Customer

: SP 1706534

: 2-14885

548.1	06/06/2017:206663 All preparation quality controls are within established criteria.
549	06/06/2017:206655 All preparation quality controls are within established criteria.
549.2	06/09/2017:208531 All analysis quality controls are within established criteria.
632	06/12/2017:208630 All analysis quality controls are within established criteria.
	06/02/2017:205153 All preparation quality controls are within established criteria, except: The following note applies to Diuron: 436 Blank Spike (BS) not within Acceptance Range (AR). Data was accepted based on the LCS or CCV recovery.

Radio QC

900.0	06/06/2017:208378 All analysis quality controls are within established criteria.
	06/05/2017:206557 All preparation quality controls are within established criteria.
Ra - 05	06/13/2017:208747 All analysis quality controls are within established criteria.
	06/08/2017:206549 All preparation quality controls are within established criteria.

Inorganic - Wet Chemistry QC

2120B	06/01/2017:208140 All analysis quality controls are within established criteria.
	06/01/2017:206526 All preparation quality controls are within established criteria.
2130B	06/01/2017:208106 All analysis quality controls are within established criteria.
	06/01/2017:206492 All preparation quality controls are within established criteria.
2150B	05/31/2017:206527 All preparation quality controls are within established criteria.
2320B	06/01/2017:208095 All analysis quality controls are within established criteria.
	06/01/2017:206428 All preparation quality controls are within established criteria, except: The following note applies to Bicarbonate: 440 Sample nonhomogeneity may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

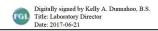
June 21, 2017 Vandenberg Village CSD

Inorganic - Wet Chemistry QC

Lab ID

Customer

: SP 1706534


: 2-14885

2510B	06/02/2017:208102 All analysis quality controls are within established criteria.
	06/02/2017:206486 All preparation quality controls are within established criteria.
2540CE	06/01/2017:206462 All preparation quality controls are within established criteria.
300.0	06/01/2017:208136 All analysis quality controls are within established criteria.
	06/01/2017:206519 All preparation quality controls are within established criteria.
314.0	06/08/2017:208451 All analysis quality controls are within established criteria.
	06/07/2017:206777 All preparation quality controls are within established criteria.
5540C	06/01/2017:208253 All analysis quality controls are within established criteria.
	06/01/2017:206610 All preparation quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Analytical Chemists

June 21, 2017 Lab ID : SP 1706534-000

Customer ID: 2-14885

Vandenberg Village CSD

3757 Constellation Road Sampled On : May 31, 2017-00:00

Lompoc, CA 93436 Sampled By : Rick Hoffman

Received On : May 31, 2017-16:00 Matrix : Lab. Blank Water

Description : Travel Blank

Project : Old Fire Station Test Well - Title 22

Sample Result - Organic

Constituent	Result PQL		Units	Note	Sample Preparation		Sample Analysis	
Constituent	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 504.1								
1,3-Dibromopropane [‡]	94.1	70-130	%		504	06/02/17:206506	504.1	06/05/17:208138
DBCP	ND	0.01	ug/L		504	06/02/17:206506	504.1	06/05/17:208138
EDB	ND	0.02	ug/L		504	06/02/17:206506	504.1	06/05/17:208138
SRL 524M-TCP	_		_			_		
1,2,3-Trichloropropane	ND	0.005	ug/L		524M-TCP	06/02/17:206561	524MTCP	06/02/17:208192

ND=Non-Detected. PQL=Practical Quantitation Limit. ‡Surrogate. * PQL adjusted for dilution.

Customer ID: 2-14885

Vandenberg Village CSD 3757 Constellation Road

Lompoc, CA 93436

Sampled On : May 31, 2017-12:30

Sampled By : Rick Hoffman

Received On : May 31, 2017-16:00

Matrix : Ground Water

Description : Old Fire Station Test Well

Project : Old Fire Station Test Well - Title 22

Sample Result - Inorganic

					Sample	Preparation	Sample Analysis	
Constituent	Result	PQL	Units	Note	Method	Date/ID	Method	Date/ID
General Mineral					Titemed	Butter 1B	memou	Butter 1B
Total Hardness as CaCO3	216		mg/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Calcium	60	1	mg/L mg/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Magnesium	16	1	mg/L mg/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Potassium	3	1	mg/L mg/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Sodium	76	1	mg/L mg/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Total Cations	7.7	1	meq/L		200.7	06/01/17:206464	200.7	06/01/17:208120
	0.1	0.1			200.7	06/01/17:206464	200.7	06/01/17:208120
Boron	ND	10	mg/L		200.7	06/01/17:206464	200.7	CONTRACTOR OF STREET
Copper	600	30	ug/L					06/01/17:208120
Iron			ug/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Manganese	150	10	ug/L		200.7	06/01/17:206464	200.7	06/01/17:208120
Zinc	100	20	ug/L		200.7	06/01/17:206464	200.7	06/01/17:208120
SAR	2.3				200.7	06/01/17:206464	200.7	06/01/17:208120
Total Alkalinity (as	80	10	mg/L		2320B	06/01/17:206428	2320B	06/01/17:208095
CaCO3)			~				200	All and a second
Hydroxide as OH	ND	10	mg/L		2320B	06/01/17:206428	2320B	06/01/17:208095
Carbonate as CO3	ND	10	mg/L		2320B	06/01/17:206428	2320B	06/01/17:208095
Bicarbonate as HCO3	100	10	mg/L		2320B	06/01/17:206428	2320B	06/01/17:208095
Sulfate	141	0.5	mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Chloride	115	2*	mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Nitrate as NO3	1.8	0.5	mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Nitrite as N	ND	0.2	mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Nitrate + Nitrite as N	0.4	0.1	mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Fluoride	0.2	0.1	mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Total Anions	7.9		meq/L		2320B	06/01/17:206428	2320B	06/01/17:208095
pH (Field)	6.7		units		4500-H B	05/31/17:206413	4500HB	05/31/17:208249
Specific Conductance	830	1	umhos/cm		2510B	06/02/17:206486	2510B	06/02/17:208102
Total Dissolved Solids	570	20	mg/L		2540CE	06/01/17:206462	2540C	06/02/17:208061
MBAS Screen	Negative	0.1	mg/L		5540C	06/01/17:206610	5540C	06/01/17:208253
Aggressiveness Index	10.8				4500-H B	05/31/17:206413	4500HB	05/31/17:208249
Langelier Index (20°C)	-1.1				4500-H B	05/31/17:206413	4500HB	05/31/17:208249
Nitrate Nitrogen	0.4		mg/L		300.0	06/01/17:206519	300.0	06/01/17:208136
Metals, Total								
Aluminum	10	10	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Antimony	ND	1	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Arsenic	28	2	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Barium	30.4	0.2	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127

Description: Old Fire Station Test Well Customer ID : 2-14885

Sample Result - Inorganic

Constituent	Result	PQL	OL Units		Sample	Preparation	Samp	le Analysis
Constituent	Result	TQL	Onits	Note	Method	Date/ID	Method	Date/ID
Metals, Total								
Beryllium	ND	1	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Cadmium	ND	0.2	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Chromium	4	1	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Lead	ND	0.5	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Mercury	ND	0.02	ug/L		245.1	06/02/17:206503	245.1	06/02/17:208134
Nickel	2	1	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Selenium	4	1	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Silver	ND	1	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Thallium	ND	0.2	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Vanadium	3	2	ug/L		200.8	06/01/17:206457	200.8	06/01/17:208127
Wet Chemistry								
Color	ND	5	units		2120B	06/01/17:206526	2120B	06/01/17:208140
Odor	ND	1	TON		2150B	05/31/17:206527	2150B	05/31/17:208141
Turbidity	3.0	0.1	NTU		2130B	06/01/17:206492	2130B	06/01/17:208106
Perchlorate	ND	2	ug/L		314.0	06/07/17:206777	314.0	06/08/17:208451

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

Customer ID: 2-14885

Vandenberg Village CSD 3757 Constellation Road

Lompoc, CA 93436

Sampled On : May 31, 2017-12:30

Sampled By : Rick Hoffman

Received On : May 31, 2017-16:00 Matrix : Ground Water

Description : Old Fire Station Test Well

Project : Old Fire Station Test Well - Title 22

Sample Result - Organic

G	D 1	DOI.	T	27	Sample	Preparation	Sampl	le Analysis
Constituent	Result	PQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 504.1								
1,3-Dibromopropane [‡]	92.9	70-130	%		504	06/02/17:206506	504.1	06/05/17:208138
DBCP	ND	0.01	ug/L		504	06/02/17:206506	504.1	06/05/17:208138
EDB	ND	0.02	ug/L		504	06/02/17:206506	504.1	06/05/17:208138
EPA 505								
Tetrachloro-m-xylene [‡]	103	70-130	%		505	06/02/17:206406	505	06/03/17:208115
Alachlor	ND	0.2	ug/L		505	06/02/17:206406	505	06/03/17:208115
Aldrin	ND	0.075	ug/L		505	06/02/17:206406	505	06/03/17:208115
Chlordane	ND	0.1	ug/L		505	06/02/17:206406	505	06/03/17:208115
Dieldrin	ND	0.01	ug/L		505	06/02/17:206406	505	06/03/17:208115
Endrin	ND	0.01	ug/L		505	06/02/17:206406	505	06/03/17:208115
Heptachlor	ND	0.01	ug/L		505	06/02/17:206406	505	06/03/17:208115
Heptachlor Epoxide	ND	0.01	ug/L		505	06/02/17:206406	505	06/03/17:208115
Hexachlorobenzene	ND	0.01	ug/L		505	06/02/17:206406	505	06/03/17:208115
Hexachlorocyclopentadiene	ND	0.1	ug/L		505	06/02/17:206406	505	06/03/17:208115
Lindane (Gamma BHC)	ND	0.05	ug/L		505	06/02/17:206406	505	06/03/17:208115
Methoxychlor	ND	0.1	ug/L		505	06/02/17:206406	505	06/03/17:208115
Toxaphene	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1016	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1221	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1232	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1242	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1248	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1254	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
PCB 1260	ND	0.5	ug/L		505	06/02/17:206406	505	06/03/17:208115
EPA 507								
Triphenylphosphate [‡]	79.6	70-130	%		507	06/05/17:206565	507	06/07/17:208349
Alachlor	ND	1	ug/L		507	06/05/17:206565	507	06/07/17:208349
Atrazine	ND	0.5	ug/L		507	06/05/17:206565	507	06/07/17:208349
Bromacil	ND	2	ug/L		507	06/05/17:206565	507	06/07/17:208349
Butachlor	ND	0.38	ug/L		507	06/05/17:206565	507	06/07/17:208349
Diazinon	ND	2	ug/L		507	06/05/17:206565	507	06/07/17:208349
Dimethoate	ND	2	ug/L		507	06/05/17:206565	507	06/07/17:208349
Metolachlor	ND	1	ug/L		507	06/05/17:206565	507	06/07/17:208349
Metribuzin	ND	0.5	ug/L		507	06/05/17:206565	507	06/07/17:208349
Molinate	ND	2	ug/L		507	06/05/17:206565	507	06/07/17:208349

Description : Old Fire Station Test Well Customer ID : 2-14885

Sample Result - Organic

Constituent	D agult	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
Constituent	Result	PQL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 507								
Prometryne	ND	2	ug/L		507	06/05/17:206565	507	06/07/17:208349
Propachlor	ND	0.5	ug/L		507	06/05/17:206565	507	06/07/17:208349
Simazine	ND	0.5	ug/L		507	06/05/17:206565	507	06/07/17:208349
Thiobencarb	ND	1	ug/L		507	06/05/17:206565	507	06/07/17:208349
Cyanazine	ND	0.5	ug/L		507	06/05/17:206565	507	06/07/17:208349
EPA 515								
2,4-DCAA [‡]	88.9	70-130	%		515.3	06/06/17:206667	515.3	06/08/17:208448
Bentazon	ND	2	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
2,4-D	ND	2	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
Dalapon	ND	10	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
Dicamba	ND	1	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
Dinoseb	ND	1	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
Pentachlorophenol	ND	0.2	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
Picloram	ND	1	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
2,4,5-TP (Silvex)	ND	1	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
2,4,5-T	ND	1	ug/L		515.3	06/06/17:206667	515.3	06/08/17:208448
EPA 524.2								
4-Bromofluorobenzene [‡]	91.3	70-130	%		524.2	06/01/17:206661	524.2	06/01/17:208289
1,2-Dichlorobenzene-d4 [‡]	88.0	70-130	%		524.2	06/01/17:206661	524.2	06/01/17:208289
Benzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Bromobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Bromochloromethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Bromodichloromethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Bromoform	1.1	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Bromomethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
n-Butylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
sec-Butylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
tert-Butylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Carbon Tetrachloride	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Chlorobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Chloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Chloroform	0.8	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Chloromethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
2-Chlorotoluene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
4-Chlorotoluene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Dibromochloromethane	0.6	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Dibromomethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289

Description : Old Fire Station Test Well Customer ID : 2-14885

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
Constituent	Result	rQL	Ollits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2								
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1-Dichloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,2-Dichloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
cis-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,2-Dichloropropane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,3-Dichloropropane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Dichloromethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
2,2-Dichloropropane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1-Dichloropropene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,3-Dichloropropene (Total)	ND		ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Di-isopropyl ether (DIPE)	ND	3	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Ethyl Benzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Ethyl tert-Butyl Ether (ETBE)	ND	3	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Hexachlorobutadiene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Isopropylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
p-Isopropyltoluene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Methyl tert-Butyl Ether (MTBE)	ND	1	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Naphthalene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
n-Propylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Styrene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Tert-amyl-methyl Ether (TAME)	ND	3	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Tetrachloroethylene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Toluene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Trichloroethylene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Trichlorofluoromethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,1,2-							0.000	
Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289

Description: Old Fire Station Test Well Customer ID : 2-14885

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
Constituent	Result	1 QL	Onts	11010	Method	Date/ID	Method	Date/ID
EPA 524.2								
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Vinyl Chloride	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Xylenes (Total)	ND		ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Xylenes m,p	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Xylenes o	ND	0.5	ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
Total Trihalomethanes	2.5		ug/L		524.2	06/01/17:206661	524.2	06/01/17:208289
EPA 531.1								
Aldicarb	ND	3	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
Aldicarb Sulfone	ND	2	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
Aldicarb Sulfoxide	ND	3	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
Carbaryl	ND	5	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
Carbofuran	ND	5	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
3-Hydroxycarbofuran	ND	3	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
Methomyl	ND	2	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
Oxamyl	ND	5	ug/L		531.1	06/07/17:206733	531.1	06/08/17:208517
EPA 547								
Glyphosate	ND	20	ug/L		547	06/02/17:206474	547	06/02/17:208073
EPA 548.1								
Endothall	ND	40	ug/L		548.1	06/06/17:206663	548.1	06/09/17:208479
EPA 549								
Diquat	ND	2	ug/L		549	06/06/17:206655	549.2	06/09/17:208531
EPA 632								
Diuron	ND	0.1	ug/L		632	06/02/17:205153	632	06/12/17:208630
SRL 524M-TCP								
1,2,3-Trichloropropane	ND	0.005	ug/L		524M-TCP	06/02/17:206561	524MTCP	06/02/17:208192

ND=Non-Detected. PQL=Practical Quantitation Limit. ‡Surrogate. * PQL adjusted for dilution.

Customer ID: 2-14885

Vandenberg Village CSD

3757 Constellation Road Sampled On : May 31, 2017-12:30

Lompoc, CA 93436 Sampled By : Rick Hoffman

Received On : May 31, 2017-16:00 : Ground Water Matrix

Description : Old Fire Station Test Well

Project : Old Fire Station Test Well - Title 22

Sample Result - Radio

Constituent	Result ⊥ Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	WIDI	Omts	WICE/IL	Method	Date/ID	Method	Date/ID
Radio Chemistry								
Gross Alpha	1.48 ± 1.62	2.10	pCi/L		900.0	06/05/17-09:15 2P1706557	900.0	06/06/17-09:20 2A1708378
Ra 228	0.000 ± 0.261	0.192	pCi/L		Ra - 05	06/08/17-19:00 2P1706549	Ra - 05	06/13/17-19:30 2A1708747

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

June 21, 2017 Lab ID Vandenberg Village CSD Customer

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,2-Dibromoethane(EDB)	504	06/02/17:206506SBL	Blank	ug/L		ND	< 0.02	
,			LCS	ug/L	0.2478	108 %	70-130	
			LCS	ug/L	0.2527	111 %	70-130	
			BS	ug/L	0.2556	105 %	70-130	
			BSD	ug/L	0.2522	108 %	70-130	
			BSRPD	ug/L	0.5920	1.7%	≤30	
			QMDL	ug/L	0.01840	60.7 %	60-140	
1,3-Dibromopropane	504	06/02/17:206506SBL	Blank	ug/L	0.5868	100 %	70-130	
			LCS LCS	ug/L	0.5816	101 %	70-130	
			BS	ug/L	0.5932 0.6000	103 % 104 %	70-130 70-130	
			BSD	ug/L	0.5920	97.4 %	70-130	
			BSRPD	ug/L ug/L	0.5920	7.7%	70-130 ≤30	
			QMDL		0.5437	101 %	70-130	
DBCP	504	06/02/17:206506SBL	Blank	ug/L ug/L	0.5437	ND	<0.01	
	304	00/02/17.2003003BL	LCS	ug/L ug/L	0.2478	109 %	70-130	
			LCS	ug/L ug/L	0.2527	110 %	70-130	
			BS	ug/L ug/L	0.2556	102 %	70-130	
			BSD	ug/L	0.2522	102 %	70-130	
			BSRPD	ug/L	0.5920	1.6%	≤30	
			QMDL	ug/L	0.01840	102 %	60-140	
13DBP	504.1	06/05/17:208138SBL	CCV	ug/L	9.975	97.5 %	70-130	
			CCV	ug/L	7.481	108 %	70-130	
DBCP	504.1	06/05/17:208138SBL	CCV	ug/L	5.000	99.0 %	70-130	
Product (Page)	56, 90, 10,000		CCV	ug/L	2.000	102 %	70-130	
EDB	504.1	06/05/17:208138SBL	CCV	ug/L	5.000	103 %	70-130	
3.47			CCV	ug/L	2.000	84.5 %	70-130	
Alachlor	505	06/02/17:206406SBL	Blank	ug/L		ND	< 0.2	
			LCS	ug/L	5.898	99.0 %	84-135	
			MS	ug/L	6.011	115 %	73-137	
		(SP 1706517-001)	MSD	ug/L	5.843	131 %	73-137	
			MSRPD	ug/L	1.170	10.3%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	150.0	97.7 %	70-130	
			CCV	ug/L	100.0	112 %	70-130	
Aldrin	505	06/02/17:206406SBL	Blank	ug/L		ND	< 0.075	
			LCS	ug/L	0.5898	102 %	69-134	
			MS	ug/L	0.6011	97.6 %	21-166	
		(SP 1706517-001)	MSD	ug/L	0.5843	99.8 %	21-166	
		0.5/00/4.5.00044.5007	MSRPD	ug/L	1.170	0.6%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	15.00	103 %	70-130	
			CCV	ug/L	10.00	99.2 %	70-130	
Chlordane	505	06/02/17:206406SBL	Blank	ug/L		ND	<0.1	
Dieldrin	505	06/02/17:206406SBL	Blank	ug/L	0.5000	ND	< 0.01	
			LCS	ug/L	0.5898	87.7 %	82-131	
		(SP 1706517-001)	MS	ug/L	0.6011	86.7 %	66-141	
		(Sr 1/0051/-001)	MSD MSRPD	ug/L ug/L	0.5843 1.170	91.5 % 2.6%	66-141 ≤30	
	505	06/02/17/200115001						
	505	06/03/17:208115SBL	CCV CCV	ug/L ug/L	15.00 10.00	92.1 % 87.1 %	70-130 70-130	
Endrin	505	06/02/17:206406SBL	Blank		10.00		<0.01	
Enterin	303	00/02/17.2004005BL	LCS	ug/L ug/L	0.5898	ND 83.3 %	83-120	
			MS	ug/L ug/L	0.5898	85.5 % 86.1 %	58-134	
		(SP 1706517-001)	MSD	ug/L ug/L	0.5843	92.5 %	58-134	
		(51 1700517-001)	MSRPD	ug/L ug/L	1.170	4.3%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	15.00	94.7 %	70-130	
	303	1 - 3, 00, 1 , 1200110 DDL		~g =	10.00	, / V	, 0 100	

: SP 1706534

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Endrin	505	06/03/17:208115SBL	CCV	ug/L	10.00	82.7 %	70-130	
Heptachlor	505	06/02/17:206406SBL	Blank	ug/L	10.00	ND	< 0.01	
			LCS	ug/L	0.5898	94.3 %	71-131	
			MS	ug/L	0.6011	90.9 %	73-135	
		(SP 1706517-001)	MSD	ug/L	0.5843	93.3 %	73-135	
			MSRPD	ug/L	1.170	0.2%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	15.00	98.0 %	70-130	
H - 11 - 5 - 11	505	0.6/02/17 20.640.6001	CCV	ug/L	10.00	93.4 %	70-130	
Heptachlor Epoxide	505	06/02/17:206406SBL	Blank LCS	ug/L	0.5898	ND 96.2 %	<0.01 75-129	
			MS	ug/L ug/L	0.5898	90.2 %	65-134	
		(SP 1706517-001)	MSD	ug/L ug/L	0.5843	96.4 %	65-134	
		(81 1/0001/ 001)	MSRPD	ug/L	1.170	1.9%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	15.00	96.3 %	70-130	
			CCV	ug/L	10.00	94.6 %	70-130	
Hexachlorobenzene	505	06/02/17:206406SBL	Blank	ug/L		ND	< 0.01	
			LCS	ug/L	0.5898	98.6 %	69-134	
			MS	ug/L	0.6011	96.1 %	71-136	
		(SP 1706517-001)	MSD	ug/L	0.5843	98.6 %	71-136	
	505	06/02/17-200115CDI	MSRPD	ug/L	1.170	0.3%	≤30	
	505	06/03/17:208115SBL	CCV CCV	ug/L	15.00 10.00	100 %	70-130 70-130	
Hexachlorocyclopentadiene	505	06/02/17:206406SBL	Blank	ug/L	10.00	97.2 % ND	<0.1	
Hexachiorocyclopentatiene	303	00/02/17:200400SBL	LCS	ug/L ug/L	0.5898	99.4 %	48-144	
			MS	ug/L ug/L	0.6011	96.8 %	60-152	
		(SP 1706517-001)	MSD	ug/L	0.5843	99.4 %	60-152	
			MSRPD	ug/L	1.170	0.2%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	15.00	104 %	70-130	
			CCV	ug/L	10.00	98.6 %	70-130	
Lindane	505	06/02/17:206406SBL	Blank	ug/L		ND	< 0.05	
			LCS	ug/L	0.5898	122 %	76-131	
		(CD 170(517 001)	MS	ug/L	0.6011	119 %	72-132	
		(SP 1706517-001)	MSD MSRPD	ug/L	0.5843	127 %	72-132	
	505	06/03/17:208115SBL	CCV	ug/L	1.170 15.00	3.1% 124 %	≤30 70-130	
	303	00/03/17.2081133BL	CCV	ug/L ug/L	10.00	124 %	70-130	
Methoxychlor	505	06/02/17:206406SBL	Blank	ug/L	10.00	ND	<0.1	
	303		LCS	ug/L ug/L	2.949	88.6 %	73-137	
			MS	ug/L	3.006	90.4 %	59-145	
		(SP 1706517-001)	MSD	ug/L	2.921	97.2 %	59-145	
			MSRPD	ug/L	1.170	4.4%	≤30	
	505	06/03/17:208115SBL	CCV	ug/L	75.00	99.3 %	70-130	
DCD 1016/1242	505	06/02/17 206/10655	CCV	ug/L	50.00	88.9 %	70-130	
PCB 1016/1242 - 1	505	06/02/17:206406SBL	Blank	ug/L	-	ND ND	<0.5	
PCB 1221 - 1	505	06/02/17:206406SBL	Blank Blank	ug/L		ND ND	<0.5	
PCB 1232 - 1	505	06/02/17:206406SBL	0.02200246	ug/L		ND ND	<0.5	
PCB 1242 PCB 1248 - 1	505 505	06/02/17:206406SBL 06/02/17:206406SBL	Blank	ug/L		ND ND	<0.5 <0.5	
PCB 1248 - 1 PCB 1254 - 1	505	06/02/17:206406SBL 06/02/17:206406SBL	Blank Blank	ug/L	1	ND ND	<0.5	
PCB 1254 - 1 PCB 1260 - 1	505		Blank	ug/L	-	ND ND	<0.5	
Tetrachloro-m-xylene	505	06/02/17:206406SBL 06/02/17:206406SBL	Blank	ug/L	1.157	95.5 %	70-130	
i cuacinoro-in-xylene	303	00/02/17:200400SBL	LCS	ug/L ug/L	1.157	95.5 % 99.2 %	70-130	
			MS	ug/L ug/L	1.203	97.8 %	N/A	
	1	(SP 1706517-001)	MSD	ug/L ug/L	1.170	100 %	N/A	i

Lab ID

Customer

: SP 1706534 : 2-14885

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Tetrachloro-m-xylene	505	06/02/17:206406SBL	MSRPD	ug/L	1.170	0.1%	≤30.0	
-	505	06/03/17:208115SBL	CCV	ug/L	30.03	104 %	70-130	
			CCV	ug/L	20.02	95.9 %	70-130	
Toxaphene	505	06/02/17:206406SBL	Blank	ug/L		ND	< 0.5	
Alachlor	507	06/05/17:206565caa	Blank	ug/L		ND	<1	
			LCS	ug/L	2.500	93.0 %	70-130	
			BS	ug/L	2.500	78.9 %	47-147	
			BSD	ug/L	2.500	81.4 %	47-147	
		0.000011000010000	BSRPD	ug/L	12.50	0.063	≤1	
	507	06/07/17:208349SG	CCV	ug/L	1000	95.2 %	80-120	
****		0.5/0.5/1.5.0.5.5.5	CCV	ug/L	500.0	105 %	80-120	
Atrazine	507	06/05/17:206565caa	Blank	ug/L	2.500	ND	< 0.5	
			LCS	ug/L	2.500	75.7 %	70-130	
			BS BSD	ug/L ug/L	2.500 2.500	65.4 % 76.4 %	52-154 52-154	
			BSRPD	ug/L ug/L	12.50	0.27	≤0.5	
	507	06/07/17:208349SG	CCV	ug/L ug/L	1000	85.6 %	80-120	
	307	00/07/17.20034930	CCV	ug/L ug/L	500.0	91.5 %	80-120	
Bromacil	507	06/05/17:206565caa	Blank	ug/L	300.0	ND	<2	
Bromaen	307	00/03/17.200303 cu d	LCS	ug/L	2.500	84.1 %	70-130	
			BS	ug/L	2.500	47.0 %	38-170	
			BSD	ug/L	2.500	84.0 %	38-170	
			BSRPD	ug/L	12.50	0.92	≤2	
	507	06/07/17:208349SG	CCV	ug/L	1000	94.4 %	80-120	
			CCV	ug/L	500.0	102 %	80-120	
Butachlor	507	06/05/17:206565caa	Blank	ug/L		ND	< 0.38	
			LCS	ug/L	2.500	88.2 %	70-130	
			BS	ug/L	2.500	63.9 %	37-150	
			BSD	ug/L	2.500	75.3 %	37-150	
			BSRPD	ug/L	12.50	0.28	≤0.38	
	507	06/07/17:208349SG	CCV	ug/L	1000	86.9 %	80-120	
		0.5/0.5/4.5.00.55.55	CCV	ug/L	500.0	82.2 %	80-120	
Cyanazine	507	06/05/17:206565caa	Blank	ug/L	2.500	ND	< 0.5	
			LCS BS	ug/L	2.500 2.500	83.1 % 69.8 %	70-130 41-152	
			BSD	ug/L ug/L	2.500	71.6 %	41-152	
			BSRPD	ug/L ug/L	12.50	0.045	≤0.5	
	507	06/07/17:208349SG	CCV	ug/L	1000	89.0 %	80-120	
	307	20/01/11/12/03 1750	CCV	ug/L ug/L	500.0	106 %	80-120	
Diazinon	507	06/05/17:206565caa	Blank	ug/L	2 3 0 10	ND	<2	
	1	20,00,1,12000000uu	LCS	ug/L ug/L	2.500	108 %	70-130	
			BS	ug/L	2.500	98.0 %	56-128	
			BSD	ug/L	2.500	104 %	56-128	
			BSRPD	ug/L	12.50	0.15	≤2	
	507	06/07/17:208349SG	CCV	ug/L	1000	104 %	80-120	
			CCV	ug/L	500.0	95.2 %	80-120	
Dimethoate	507	06/05/17:206565caa	Blank	ug/L		ND	<2	
			LCS	ug/L	2.500	86.9 %	70-130	
			BS	ug/L	2.500	72.9 %	49-168	
			BSD	ug/L	2.500	76.3 %	49-168	
			BSRPD	ug/L	12.50	0.084	≤2	
		0.0001100000000000000000000000000000000	COLL	f	1000			
	507	06/07/17:208349SG	CCV CCV	ug/L ug/L	1000 500.0	108 % 109 %	80-120 80-120	

Lab ID

Customer

: SP 1706534 er : 2-14885

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
EPN/Triphenylphosphate	507	06/05/17:206565caa	LCS	ug/L	12.50	89.3 %	70-130	
			BS	ug/L	12.50	73.3 %	70-130	
			BSD	ug/L	12.50	87.5 %	70-130	
			BSRPD	ug/L	12.50	17.6%	≤30	
Metolachlor	507	06/05/17:206565caa	Blank	ug/L		ND	<1	
			LCS	ug/L	2.500	76.5 %	70-130	
			BS	ug/L	2.500	66.5 %	45-154	
			BSD	ug/L	2.500	78.4 %	45-154	
			BSRPD	ug/L	12.50	0.30	≤1	
	507	06/07/17:208349SG	CCV	ug/L	1000	90.5 %	80-120	
			CCV	ug/L	500.0	106 %	80-120	
Metribuzin	507	06/05/17:206565caa	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	2.500	85.8 %	70-130	
			BS	ug/L	2.500	75.5 %	30-169	
			BSD	ug/L	2.500 12.50	110 %	30-169 ≤0.5	410
	507	06/07/17:208349SG	BSRPD CCV	ug/L	1000	0.85 88.0 %	≥0.3 80-120	410
	307	06/07/17:208349SG	CCV	ug/L	500.0	88.0 % 94.4 %	80-120 80-120	
Molinate	507	06/05/17:206565caa	Blank	ug/L ug/L	300.0	94.4 % ND	<2	
Monnate	307	00/03/17.200303caa	LCS	ug/L ug/L	2.500	95.4 %	70-130	
			BS	ug/L ug/L	2.500	83.5 %	19-191	
			BSD	ug/L ug/L	2.500	93.9 %	19-191	
			BSRPD	ug/L ug/L	12.50	0.26	<2 ≤2	
	507	06/07/17:208349SG	CCV	ug/L	1000	80.3 %	80-120	
	307	00/07/17.2003 1750	CCV	ug/L ug/L	500.0	82.1 %	80-120	
Prometryne	507	06/05/17:206565caa	Blank	ug/L		ND	<2	
· ·			LCS	ug/L	2.500	80.3 %	70-130	
			BS	ug/L	2.500	73.0 %	44-152	
			BSD	ug/L	2.500	77.8 %	44-152	
			BSRPD	ug/L	12.50	0.12	≤2	
	507	06/07/17:208349SG	CCV	ug/L	1000	91.5 %	80-120	
			CCV	ug/L	500.0	98.8 %	80-120	
Propachlor	507	06/05/17:206565caa	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	2.500	99.4 %	70-130	
			BS	ug/L	2.500	85.9 %	36-179	
			BSD	ug/L	2.500	88.9 %	36-179	
	507	06/07/17 2002 4000	BSRPD	ug/L	12.50	0.075	≤0.5	
	507	06/07/17:208349SG	CCV CCV	ug/L	1000	86.1 %	80-120	
Simonia a	507	06/05/17.20/5/5		ug/L	500.0	83.9 % ND	80-120 <0.5	
Simazine	507	06/05/17:206565caa	Blank	ug/L	2 500			
			LCS BS	ug/L	2.500	84.7 % 69.9 %	70-130 49-167	
			BSD	ug/L ug/L	2.500 2.500	77.5 %	49-167	
			BSRPD	ug/L ug/L	12.50	0.19	49-167 ≤0.5	
	507	06/07/17:208349SG	CCV	ug/L ug/L	1000	85.2 %	80-120	
	307	00/0//17.2003493U	CCV	ug/L ug/L	500.0	102 %	80-120	
Thiobencarb	507	06/05/17:206565caa	Blank	ug/L ug/L	200.0	ND	<1	
1 moonouro	307	55/05/17.200505Cda	LCS	ug/L ug/L	2.500	91.0 %	70-130	
			BS	ug/L ug/L	2.500	79.4 %	50-148	
			BSD	ug/L ug/L	2.500	83.3 %	50-148	
			BSRPD	ug/L ug/L	12.50	0.097	≤1	
	507	06/07/17:208349SG	CCV	ug/L	1000	94.7 %	80-120	
			CCV	ug/L	500.0	101 %	80-120	
Triphenylphosphate	507	06/07/17:208349SG	CCV	ug/L	7501	99.0 %	80-120	

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Triphenylphosphate	507	06/07/17:208349SG	CCV	ug/L	2500	112 %	80-120	
2,4,5-T	515.3	06/08/17:208448SG	CCV	ug/L	40.00	103 %	70-130	
			CCV	ug/L	80.00	113 %	70-130	
2,4,5-TP (Silvex)	515.3	06/06/17:206667SG	Blank	ug/L		ND	<1	
			LCS	ug/L	4.000	83.2 %	70-130	
		(SP 1706517-001)	MS MSD	ug/L ug/L	4.000 4.000	87.2 % 88.6 %	70-130 70-130	
		(51 1700517-001)	MSRPD	ug/L ug/L	20.00	0.057	√0-130 ≤1	
	515.3	06/08/17:208448SG	CCV	ug/L	40.00	87.5 %	70-130	
			CCV	ug/L	80.00	102 %	70-130	
2,4,5-Trichlorophenoxyacetic A	515.3	06/06/17:206667SG	Blank	ug/L	1.0281.04.050.0041	ND	<1	
			LCS	ug/L	4.000	113 %	70-130	
		(CD 170(517 001)	MS	ug/L	4.000	109 %	70-130	
		(SP 1706517-001)	MSD MSRPD	ug/L ug/L	4.000 20.00	111 % 0.082	70-130 ≤1	
2,4-D	515.3	06/06/17:206667SG	Blank	ug/L ug/L	20.00	ND	<2	
2,1 D	313.3	00/00/17.20000750	LCS	ug/L	8.000	98.7 %	70-130	
			MS	ug/L	8.000	97.4 %	70-130	
		(SP 1706517-001)	MSD	ug/L	8.000	94.1 %	70-130	
			MSRPD	ug/L	20.00	0.27	≤2	
	515.3	06/08/17:208448SG	CCV	ug/L	80.00	91.7 %	70-130	
2,4-DCAA	515.3	06/06/17:20666786	CCV	ug/L	160.0	100 %	70-130 70-130	
2,4-DCAA	313.3	06/06/17:206667SG	Blank LCS	ug/L ug/L	20.00 20.00	87.1 % 120 %	70-130	
			MS	ug/L ug/L	20.00	102 %	N/A	
		(SP 1706517-001)	MSD	ug/L	20.00	117 %	N/A	
			MSRPD	ug/L	20.00	13.6%	≤30.	
	515.3	06/08/17:208448SG	CCV	ug/L	200.0	121 %	70-130	
D	515.2	06/06/17 20666786	CCV	ug/L	400.0	104 %	70-130	
Bentazon	515.3	06/06/17:206667SG	Blank LCS	ug/L	8.000	ND 117 %	<2 70-130	
			MS	ug/L ug/L	8.000	109 %	70-130	
		(SP 1706517-001)	MSD	ug/L	8.000	97.1 %	70-130	
			MSRPD	ug/L	20.00	0.95	≤2	
	515.3	06/08/17:208448SG	CCV	ug/L	80.00	95.2 %	70-130	
			CCV	ug/L	160.0	116 %	70-130	
Dalapon	515.3	06/06/17:206667SG	Blank	ug/L	52.00	2.3	10 70-130	
			LCS MS	ug/L ug/L	52.00 52.00	130 % 98.7 %	70-130	
		(SP 1706517-001)	MSD	ug/L ug/L	52.00	91.2 %	70-130	
			MSRPD	ug/L	20.00	7.6%	≤30.0	
	515.3	06/08/17:208448SG	CCV	ug/L	520.0	121 %	70-130	
			CCV	ug/L	1040	88.8 %	70-130	
Dicamba	515.3	06/06/17:206667SG	Blank	ug/L	4.000	ND	<1	
			LCS MS	ug/L ug/L	4.000 4.000	95.7 % 88.9 %	70-130 70-130	
		(SP 1706517-001)	MSD	ug/L ug/L	4.000	99.4 %	70-130	
		(21 1/0001/ 001)	MSRPD	ug/L	20.00	0.42	<u>≤1</u>	
	515.3	06/08/17:208448SG	CCV	ug/L	40.00	105 %	70-130	
			CCV	ug/L	80.00	93.6 %	70-130	
Dinoseb	515.3	06/06/17:206667SG	Blank	ug/L	90 000000	ND	<1	
			LCS	ug/L	8.000	96.7 %	70-130	
		(SP 1706517-001)	MS MSD	ug/L	8.000 8.000	90.5 % 96.1 %	70-130 70-130	
	1	(31 1/0031/-001)	מטואו	ug/L	0.000	70.1 70	70-130	

Lab ID Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Dinoseb	515.3	06/06/17:206667SG	MSRPD	ug/L	20.00	6.0%	≤30.0	
	515.3	06/08/17:208448SG	CCV	ug/L	80.00	90.8 %	70-130	
			CCV	ug/L	160.0	102 %	70-130	
Pentachlorophenol	515.3	06/06/17:206667SG	Blank	ug/L		ND	< 0.2	
			LCS	ug/L	4.000	105 %	70-130	
		(CD 150 (515 001)	MS	ug/L	4.000	94.5 %	70-130	
		(SP 1706517-001)	MSD MSRPD	ug/L	4.000 20.00	101 % 6.4%	70-130 ≤30.0	
	515.3	06/08/17:208448SG	CCV	ug/L ug/L	40.00	102 %	70-130	
	313.3	00/08/17.20044030	CCV	ug/L ug/L	80.00	100 %	70-130	
Picloram	515.3	06/06/17:206667SG	Blank	ug/L		ND	<1	
			LCS	ug/L	4.000	113 %	70-130	
			MS	ug/L	4.000	101 %	70-130	
		(SP 1706517-001)	MSD	ug/L	4.000	98.0 %	70-130	
	515.0	0.6/00/17 00044000	MSRPD	ug/L	20.00	0.11	<u>≤</u> 1	
	515.3	06/08/17:208448SG	CCV	ug/L	40.00	105 %	70-130	
1 1 1 2 Tatasahlamathana	524.2	06/01/17-206661VDC	CCV	ug/L	80.00	105 %	70-130	
1,1,1,2-Tetrachloroethane	524.2	06/01/17:206661VRG	Blank MS	ug/L	10.00	ND 115 %	<0.5 12-178	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	127 %	12-178	
		(51 1700515 001)	MSRPD	ug/L ug/L	10.00	9.8%	≤39	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	119 %	70-130	
1,1,1-Trichloroethane(TCA)	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
1,1-1richloroethane(TCA)			MS	ug/L	10.00	135 %	9-176	
		(SP 1706515-001)	MSD	ug/L	10.00	144 %	9-176	
			MSRPD	ug/L	10.00	6.3%	≤33	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	112 %	70-130	
1,1,2,2-Tetrachloroethane	524.2	06/01/17:206661VRG		ug/L	0101101011	ND	< 0.5	
		(CD 150(515 001)	MS	ug/L	10.00	119 %	23-180	
		(SP 1706515-001)	MSD	ug/L	10.00	136 %	23-180	
	524.2	06/01/17:208289VRG	MSRPD CCV	ug/L ug/L	10.00 10.00	13.7% 138 %	≤34 70-130	360
1,1,2-Trichloroethane	524.2	06/01/17:206289 VRG	Blank	ug/L ug/L	10.00	ND	<0.5	300
1,1,2-111cmoroemane	324.2	00/01/17.200001 VKG	MS	ug/L ug/L	10.00	110 %	25-173	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	116 %	25-173	
			MSRPD	ug/L	10.00	5.5%	≤29	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	117 %	70-130	
1,1-Dichloroethane	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	114 %	15-161	
		(SP 1706515-001)	MSD	ug/L	10.00	122 %	15-161	
		0.6/01/11# 6000000	MSRPD	ug/L	10.00	6.1%	≤36	
11 D' 11	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	107 %	70-130	
1,1-Dichloroethylene	524.2	06/01/17:206661VRG		ug/L	10.00	ND 92.9.0/	<0.5	
		(SP 1706515-001)	MS MSD	ug/L ug/L	10.00 10.00	82.8 % 86.6 %	0-162 0-162	
		(31 1/00313-001)	MSRPD	ug/L ug/L	10.00	4.4%	6-162 ≤33	
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	10.00	70.4 %	70-130	
1,1-Dichloropropene	524.2	06/01/17:206269 VRG		ug/L ug/L	10.00	ND	<0.5	
1,1 Diemoropropene	321.2	35/01/17/200001 TRO	MS	ug/L ug/L	10.00	115 %	0-171	
		(SP 1706515-001)	MSD	ug/L	10.00	124 %	0-171	
		*	MSRPD	ug/L	10.00	7.7%	≤31	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	93.9 %	70-130	
1,2,3-Trichlorobenzene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	100 %	14-181	

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,2,3-Trichlorobenzene	524.2	(SP 1706515-001)	MSD	ug/L	10.00	140 %	14-181	
-,-,-		(MSRPD	ug/L	10.00	33.1%		
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	137 %	14-181	360
1,2,4-Trichlorobenzene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
7			MS	ug/L	10.00	88.9 %	10-180	
		(SP 1706515-001)	MSD	ug/L	10.00	122 %		
			MSRPD	ug/L	10.00	31.3%		
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	114 %		
1,2,4-Trimethylbenzene	524.2	06/01/17:206661VRG	Blank	ug/L	10.00	ND		
		(CD 170(515 001)	MS	ug/L	10.00	117 %		
		(SP 1706515-001)	MSD MSRPD	ug/L	10.00 10.00	140 %		
	524.2	06/01/17-209290VDC		ug/L		17.8%	-	
1.2 Dichlamhan	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	129 %		
1,2-Dichlorobenzene	524.2	06/01/17:206661VRG	Blank MS	ug/L	10.00	ND 117 %		
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	143 %		
		(51 1700313-001)	MSRPD	ug/L ug/L	10.00	19.7%		
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	10.00	131 %		360
1,2-Dichlorobenzene-d4	524.2	06/01/17:206269 VRG	Blank	ug/L	10.00	95.9 %		300
1,2 Diemorocenzene d	321.2	00/01/17.200001 VICO	MS	ug/L	10.00	103 %		
		(SP 1706515-001)	MSD	ug/L	10.00	121 %	1.00(10) 5.000000000	
			MSRPD	ug/L	10.00	15.3%		
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	121 %		
1,2-Dichloroethane (EDC)	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	112 %	18-162	
2-Dichloroethane (EDC)		(SP 1706515-001)	MSD	ug/L	10.00	122 %		
			MSRPD	ug/L	10.00	9.1%		
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	117 %		
1,2-Dichloropropane	524.2	06/01/17:206661VRG	Blank	ug/L	1 (2755) 1100 1001	ND	The second secon	
		(07.450(545.004)	MS	ug/L	10.00	114 %	2001 10 500000000	
		(SP 1706515-001)	MSD	ug/L	10.00	120 %		
	524.2	06/01/17 2002003/DG	MSRPD	ug/L	10.00	5.9%		
1.2.5 Th	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	112 %		
1,3,5-Trimethylbenzene	524.2	06/01/17:206661VRG	Blank	ug/L	10.00	ND	77.000	
		(SP 1706515-001)	MS MSD	ug/L ug/L	10.00 10.00	123 % 142 %		
		(31 1/00313-001)	MSRPD	ug/L ug/L	10.00	14.3%		
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	121 %		
1,3-Dichlorobenzene	524.2	06/01/17:206661VRG	Blank	ug/L	10.00	ND		
2,5 Diemoroconzone	324.2	33/01/17.200001 VIKO	MS	ug/L ug/L	10.00	120 %		
		(SP 1706515-001)	MSD	ug/L	10.00	137 %		
			MSRPD	ug/L	10.00	13.3%		
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	126 %		
1,3-Dichloropropane	524.2		Blank	ug/L		ND		
			MS	ug/L	10.00	111 %		
		(SP 1706515-001)	MSD	ug/L	10.00	120 %	0-178	
		1	MSRPD	ug/L	10.00	7.6%	≤29	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	121 %	70-130	
1,4-Dichlorobenzene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	127 %	19-183	
		(SP 1706515-001)	MSD	ug/L	10.00	146 %	19-183	
		0.5/0.4/4.7.5	MSRPD	ug/L	10.00	14.3%	<37	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	139 %	70-130	360
2,2-Dichloropropane	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
2,2-Dichloropropane	524.2		MS	ug/L	10.00	129 %	0-288	
-,,,,,,,,,,-		(SP 1706515-001)	MSD	ug/L	10.00	138 %	0-288	
		` `	MSRPD	ug/L	10.00	6.9%	≤33	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	108 %	70-130	
2-Chlorotoluene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	123 %	17-180	
		(SP 1706515-001)	MSD	ug/L	10.00	141 %	17-180	
	524.2	06/01/17:208289VRG	MSRPD CCV	ug/L	10.00	13.2%	≤38 70-130	
4-Bromofluorobenzene	524.2	06/01/17:208289 VRG		ug/L ug/L	10.00	123 % 96.8 %	70-130	
4-Bromondorobenzene	324.2	00/01/17:200001VRG	MS	ug/L ug/L	10.00	112 %	70-130	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	115 %	70-130	
		(81 1700313 001)	MSRPD	ug/L	10.00	2.5%	≤30	
4-Bromofluorobenzene (BFB)	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	117 %	70-130	
4-Chlorotoluene	524.2	06/01/17:206661VRG		ug/L		ND	<0.5	
			MS	ug/L	10.00	126 %	11-177	
		(SP 1706515-001)	MSD	ug/L	10.00	146 %	11-177	
			MSRPD	ug/L	10.00	14.7%	≤41	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	129 %	70-130	
Benzene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
		/an .=0.54.5 00.1	MS	ug/L	10.00	109 %	12-158	
		(SP 1706515-001)	MSD	ug/L	10.00	117 %	12-158	
	524.2	06/01/17/2002001/DG	MSRPD CCV	ug/L	10.00	7.0%	≤36 70-130	
Bromobenzene	524.2	06/01/17:208289VRG 06/01/17:206661VRG		ug/L	10.00	102 %		
Bromobenzene	524.2	06/01/17:206661VRG	Blank MS	ug/L ug/L	10.00	ND 113 %	<0.5 23-177	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	127 %	23-177	
		(51 1700313-001)	MSRPD	ug/L ug/L	10.00	11.5%	≤40	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	119 %	70-130	
Bromochloromethane	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
	1900 VIO. 50-0		MS	ug/L	10.00	105 %	4-186	
		(SP 1706515-001)	MSD	ug/L	10.00	115 %	4-186	
			MSRPD	ug/L	10.00	8.6%	≤30	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	111 %	70-130	
Bromodichloromethane	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
		(CD 170(515 001)	MS	ug/L	10.00	131 %	11-164	
		(SP 1706515-001)	MSD MSRPD	ug/L	10.00 10.00	139 % 6.3%	11-164 ≤34	
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	10.00	129 %	70-130	
Bromoform	524.2	06/01/17:206269 VRG			10.00	ND	<0.5	
Bromoroim	324.2	00/01/17.200001 VKG	MS	ug/L ug/L	10.00	116 %	0-235	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	128 %	0-235	
		(MSRPD	ug/L	10.00	9.7%	≤39	
	524.2	06/01/17:208289VRG	7	ug/L	10.00	113 %	70-130	
Bromomethane (Methyl Bromide)	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	222 %	0-196	435
		(SP 1706515-001)	MSD	ug/L	10.00	246 %	0-196	435
		0.000111 - 0.0001	MSRPD	ug/L	10.00	10.3%	<u>≤40</u>	14 12 2
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	135 %	70-130	360
Carbon Tetrachloride	524.2	06/01/17:206661VRG		ug/L	10.00	ND	< 0.5	
		(CD 170(515 001)	MS	ug/L	10.00	132 %	5-175	
		(SP 1706515-001)	MSD MSRPD	ug/L	10.00 10.00	139 %	5-175 ≤32	
	524.2	06/01/17:208289VRG		ug/L ug/L	10.00	5.2% 105 %	<u>≤32</u> 70-130	
	324.2	00/01/1/:208289VRG	CCV	ug/L	10.00	105 %	/0-130	1

June 21, 2017 **Vandenberg Village CSD**

Lab ID Customer Quality Control - Organic

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Chlorobenzene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
Chlorobenzene	324.2	00/01/17.200001 VRG	MS	ug/L ug/L	10.00	111 %	14-175	
		(SP 1706515-001)	MSD	ug/L	10.00	120 %	14-175	
		X3 20122 0 80 Z	MSRPD	ug/L	10.00	7.6%	≤35	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	110 %	70-130	
Chloroethane (Ethyl Chloride)	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
,	V 30000 - 000		MS	ug/L	10.00	258 %	0-184	435
		(SP 1706515-001)	MSD	ug/L	10.00	290 %	0-184	435
			MSRPD	ug/L	10.00	11.6%	≤40	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	148 %	70-130	360
Chloroform	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	130 %	15-163	
		(SP 1706515-001)	MSD	ug/L	10.00	139 %	15-163	
			MSRPD	ug/L	10.00	7.0%	≤36	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	124 %	70-130	
Chloromethane(Methyl Chloride)	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	181 %	0-224	
		(SP 1706515-001)	MSD	ug/L	10.00	207 %	0-224	
			MSRPD	ug/L	10.00	13.3%	≤39	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	112 %	70-130	
cis-1,2-Dichloroethylene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
		Section of the sectio	MS	ug/L	10.00	113 %	16-172	
		(SP 1706515-001)	MSD	ug/L	10.00	117 %	16-172	
			MSRPD	ug/L	10.00	3.2%	≤34	
	524.2	06/01/17:208289VRG		ug/L	10.00	106 %	70-130	
cis-1,3-Dichloropropene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
		(00 100 (01 0 001)	MS	ug/L	9.550	118 %	5-158	
		(SP 1706515-001)	MSD	ug/L	9.550	121 %	5-158	
		0.5/0.4/4= 2.000.007779.5	MSRPD	ug/L	10.00	2.1%	≤38	
5" 11	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	111 %	70-130	
Dibromochloromethane	524.2	06/01/17:206661VRG		ug/L	10.00	ND	< 0.5	
		(CD 170(515 001)	MS	ug/L	10.00	108 %	1-180	
		(SP 1706515-001)	MSD MSRPD	ug/L	10.00 10.00	113 %	1-180 ≤34	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	4.9% 109 %	≥34 70-130	
Dily	524.2			ug/L	10.00			
Dibromomethane	324.2	06/01/17:206661VRG	Blank MS	ug/L ug/L	10.00	ND 106 %	<0.5 11-168	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	114 %	11-168	
		(51 1700313-001)	MSRPD	ug/L ug/L	10.00	6.9%	≤28	
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	10.00	116 %	70-130	
Dichlorodifluoromethane	524.2	06/01/17:206287 VRG		ug/L ug/L	10.00	ND	<0.5	
Diemoroantuoromeulane	324.2	00/01/17.200001 VKU	MS	ug/L ug/L	10.00	152 %	0-334	
	1	(SP 1706515-001)	MSD	ug/L ug/L	10.00	177 %	0-334	
	1	(52.1.555.6.551)	MSRPD	ug/L	10.00	15.2%	≤39	
	524.2	06/01/17:208289VRG		ug/L	10.00	101 %	70-130	
Dichloromethane	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MS	ug/L	10.00	103 %	20-157	
	1	(SP 1706515-001)	MSD	ug/L	10.00	109 %	20-157	
		- X 2 - 10 × 10 M 2 C 2 C 2 C 2 C 2 C	MSRPD	ug/L	10.00	5.9%	≤36	
Ethyl tert-Butyl Ether	524.2	06/01/17:206661VRG	Blank	ug/L		ND	<3	
		The state of the s	MS	ug/L	10.00	123 %	11-165	
	1	(SP 1706515-001)	MSD	ug/L	10.00	130 %	11-165	
			MSRPD	ug/L	10.00	0.69	≤3	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	122 %	70-130	

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Ethylbenzene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
Larytoenzene	321.2	00/01/17.200001 110	MS	ug/L	10.00	112 %	9-174	
		(SP 1706515-001)	MSD	ug/L	10.00	123 %	9-174	
		(51 1/00010 001)	MSRPD	ug/L	10.00	9.8%	≤37	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	103 %	70-130	
Freon-11	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
11001111	02.112	00,01,1,1200001,110	MS	ug/L	10.00	229 %	0-232	
		(SP 1706515-001)	MSD	ug/L	10.00	247 %	0-232	435
			MSRPD	ug/L	10.00	7.5%	≤35	
Hexachlorobutadiene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	114 %	14-200	
		(SP 1706515-001)	MSD	ug/L	10.00	144 %	14-200	
			MSRPD	ug/L	10.00	23.3%	≤40	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	115 %	70-130	
Isopropyl Ether	524.2	06/01/17:206661VRG	Blank	ug/L		ND	<3	
		was the same state of the same	MS	ug/L	10.00	136 %	8-165	
		(SP 1706515-001)	MSD	ug/L	10.00	144 %	8-165	
		,	MSRPD	ug/L	10.00	0.76	≤3	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	133 %	70-130	360
Isopropylbenzene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	111 %	4-159	
		(SP 1706515-001)	MSD	ug/L	10.00	126 %	4-159	
			MSRPD	ug/L	10.00	12.8%	≤37	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	102 %	70-130	
Methyl tert-Butyl Ether	524.2	06/01/17:208289VRG		ug/L	10.00	110 %	70-130	
Methyl tert-Butyl Ether (MTBE)	524.2	06/01/17:206661VRG		ug/L		ND	<1.0	
,- ()			MS	ug/L	10.00	105 %	11-168	
		(SP 1706515-001)	MSD	ug/L	10.00	117 %	11-168	
			MSRPD	ug/L	10.00	10.7%	≤29	
Methylene Chloride	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	106 %	70-130	
Naphthalene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
r tap management		00,01,1,1200001,110	MS	ug/L	10.00	85.9 %	0-189	
		(SP 1706515-001)	MSD	ug/L	10.00	122 %	0-189	
			MSRPD	ug/L	10.00	34.7%	≤32	435
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	121 %	70-130	
n-Butylbenzene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	125 %	4-186	
		(SP 1706515-001)	MSD	ug/L	10.00	154 %	4-186	
			MSRPD	ug/L	10.00	20.8%	≤37	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	120 %	70-130	
n-Propylbenzene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
Pysian			MS	ug/L	10.00	125 %	0-174	
		(SP 1706515-001)	MSD	ug/L	10.00	143 %	0-174	
		,	MSRPD	ug/L	10.00	13.5%	≤37	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	116 %	70-130	
p-Isopropyltoluene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	123 %	0-193	
		(SP 1706515-001)	MSD	ug/L	10.00	147 %	0-193	
		- X	MSRPD	ug/L	10.00	18.1%	≤40	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	117 %	70-130	
sec-Butylbenzene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
, , , , , , , , , , , , , , , , , , , ,			MS	ug/L	10.00	126 %	0-177	
		(SP 1706515-001)	MSD	ug/L	10.00	150 %	0-177	
			MSRPD	ug/L	10.00	17.3%	≤40	

Lab ID Customer

: SP 1706534

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
sec-Butylbenzene	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	117 %	70-130	
Styrene	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	109 %	0-198	
		(SP 1706515-001)	MSD	ug/L	10.00	124 %	0-198	
			MSRPD	ug/L	10.00	12.6%	≤37	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	124 %	70-130	
TAME	524.2	06/01/17:206661VRG	Blank	ug/L	10.00	ND	<3	
		(SP 1706515-001)	MS MSD	ug/L	10.00 10.00	120 % 131 %	15-162 15-162	
		(SF 1700313-001)	MSRPD	ug/L ug/L	10.00	1.1	13-162 ≤3	
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	10.00	124 %	70-130	
tert-Butylbenzene	524.2	06/01/17:206269 VRG		ug/L ug/L	10.00	ND	<0.5	
left Butylbenzene	324.2	00/01/17.200001 VRG	MS	ug/L	10.00	118 %	9-179	
		(SP 1706515-001)	MSD	ug/L	10.00	138 %	9-179	
		`	MSRPD	ug/L	10.00	15.5%	≤38	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	109 %	30-130	
Tetrachloroethylene (PCE)	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	113 %	14-186	
		(SP 1706515-001)	MSD	ug/L	10.00	121 %	14-186	
			MSRPD	ug/L	10.00	6.5%	≤33	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	97.0 %	70-130	
Toluene	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
		(07.150/515.001)	MS	ug/L	10.00	110 %	3-174	
		(SP 1706515-001)	MSD	ug/L	10.00	118 %	3-174	
	524.2	06/01/17 2002001/DG	MSRPD	ug/L	10.00	6.9%	≤37	
12 0:11	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	102 %	30-130	
trans-1,2-Dichloroethylene	524.2	06/01/17:206661VRG	Blank MS	ug/L	10.00	ND 99.2 %	<0.5 5-165	
		(SP 1706515-001)	MSD	ug/L ug/L	10.00	105 %	5-165	
		(31 1700313-001)	MSRPD	ug/L ug/L	10.00	5.2%	5-105 ≤40	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	89.0 %	70-130	
trans-1,3-Dichloropropene	524.2	06/01/17:206661VRG	-	ug/L	10.00	ND	<0.5	
at and 1,5 Bromoroproperto	022	00/01/1/1200001/110	MS	ug/L	9.200	115 %	0-169	
		(SP 1706515-001)	MSD	ug/L	9.200	123 %	0-169	
		, i	MSRPD	ug/L	10.00	7.4%	≤31	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	114 %	70-130	
Trichloroethylene (TCE)	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	116 %	11-167	
		(SP 1706515-001)	MSD	ug/L	10.00	121 %	11-167	
		0.5104.14= 4.004.004.19.50	MSRPD	ug/L	10.00	4.6%	≤35	
m: 11	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	102 %	70-130	
Trichlorofluoromethane F-11	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	96.0 %	70-130	
Trichlorotrifluoroethane F-113	524.2	06/01/17:206661VRG		ug/L	10.00	ND	<0.5	
		(SP 1706515-001)	MS MSD	ug/L ug/L	10.00 10.00	111 % 115 %	0-183 0-183	
		(31 1/00313-001)	MSRPD	ug/L ug/L	10.00	3.5%	0-183 ≤33	
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	5.000	165 %	70-130	360
Vinyl Chloride	524.2	06/01/17:206269 VRG	Blank	ug/L ug/L	2.300	ND	<0.5	200
, m _j i emoride	324.2	05/01/17.200001 VRO	MS	ug/L ug/L	10.00	226 %	0-208	435
	1	(SP 1706515-001)	MSD	ug/L	10.00	246 %	0-208	435
			MSRPD	ug/L	10.00	8.3%	≤40	
	524.2	06/01/17:208289VRG	CCV	ug/L	10.00	114 %	30-130	
Xylenes m,p	524.2	06/01/17:206661VRG		ug/L		ND	< 0.5	
100			MS	ug/L	20.00	120 %	0-193	

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Xylenes m,p	524.2	(SP 1706515-001)	MSD	ug/L	20.00	132 %	0-193	
			MSRPD	ug/L	10.00	9.6%	≤37	
	524.2	06/01/17:208289VRG	CCV	ug/L	20.00	114 %	70-130	
Xylenes o	524.2	06/01/17:206661VRG	Blank	ug/L		ND	< 0.5	
		(CD 150(515 001)	MS	ug/L	10.00	113 %	0-188	
		(SP 1706515-001)	MSD MSRPD	ug/L	10.00 10.00	127 %	0-188 ≤36	
	524.2	06/01/17:208289VRG	CCV	ug/L ug/L	10.00	11.5% 112 %	<u>≤30</u> 70-130	
1,2,3-Trichloropropane	524MTCP	06/02/17:208192VRG		ng/L	20.00	91.0 %	80-120	
1,2,5-111emoropropane	324141161	00/02/17:200172 VRG	CCV	ng/L	20.00	99.3 %	80-120	
			CCV	ng/L	20.00	96.6 %	80-120	
	524M-TCP	06/02/17:206561VRG	Blank	ng/L		ND	<5	
			LCS	ng/L	20.00	95.1 %	80-120	
			MS	ng/L	20.00	101 %	80-120	
		(SP 1706534-001)	MSD	ng/L	20.00	106 %	80-120	
2.17.1	50.1111	0.6/05/15 20:55225	MSRPD	ng/L	20.00	0.94	≤5	
3-Hydroxycarbofuran	531.1	06/07/17:206733SG	Blank	ug/L	20.00	ND	<3	
			LCS	ug/L	20.00	103 %	80-120	
		(CH 1773783-001)	MS	ug/L	20.00	102 %	65-135	
		(CH 1//3/83-001)	MSD MSRPD	ug/L ug/L	20.00 20.00	95.8 % 6.1%	65-135 ≤16.8	
	531.1	06/08/17:208517SG	CCV	ug/L ug/L	20.00	104 %	80-120	
	331.1	00/08/17.20831730	CCV	ug/L ug/L	10.00	104 %	80-120	
Aldicarb	531.1	06/07/17:206733SG	Blank	ug/L ug/L	10.00	ND	<3	
ridicaro	331.1	00/07/17.20073350	LCS	ug/L	20.00	99.0 %	80-120	
			MS	ug/L	20.00	97.8 %	65-135	
		(CH 1773783-001)	MSD	ug/L	20.00	100 %	65-135	
			MSRPD	ug/L	20.00	2.7%	≤11.2	
	531.1	06/08/17:208517SG	CCV	ug/L	20.00	112 %	80-120	
			CCV	ug/L	10.00	80.6 %	80-120	
Aldicarb Sulfone	531.1	06/08/17:208517SG	CCV	ug/L	20.00	95.9 %	80-120	
			CCV	ug/L	10.00	95.5 %	80-120	
Aldicarb Sulfone/Sulfoxide	531.1	06/07/17:206733SG	Blank	ug/L		ND	<3	
			Blank	ug/L	20.00	ND	<2	
			LCS	ug/L	20.00	93.0 %	80-120	
			LCS MS	ug/L ug/L	20.00 20.00	95.2 % 81.2 %	80-120 65-135	
			MS	ug/L ug/L	20.00	86.9 %	65-135	
		(CH 1773783-001)	MSD	ug/L	20.00	83.4 %	65-135	
		(CH 1773783-001)	MSD	ug/L	20.00	77.2 %	65-135	
		,	MSRPD	ug/L	20.00	4.1%	≤13.8	
			MSRPD	ug/L	20.00	5.0%	≤7.28	
Aldicarb Sulfoxide	531.1	06/08/17:208517SG		ug/L	20.00	87.6 %	80-120	
			CCV	ug/L	10.00	86.4 %	80-120	
Carbaryl	531.1	06/08/17:208517SG	CCV	ug/L	20.00	101 %	80-120	
			CCV	ug/L	10.00	97.1 %	80-120	
Carbaryl/Naphthol	531.1	06/07/17:206733SG	Blank	ug/L	20.00	ND	<5	
			LCS	ug/L	20.00	99.2 %	80-120	
		(CH 1772792 001)	MS	ug/L	20.00	99.9 %	65-135	
		(CH 1773783-001)	MSD MSRPD	ug/L	20.00	103 %	65-135 <5	
Carbofuran	531.1	06/07/17:206733SG	Blank	ug/L	20.00	0.55 ND	≤5 <5	
Carooturan	331.1	00/07/17:200/33SG	LCS	ug/L ug/L	20.00	ND 100 %	<5 80-120	
		ĺ	MS	ug/L ug/L	20.00	96.2 %	65-135	

June 21, 2017 Vandenberg Village CSD

Quality Control - Organic

Lab ID

Customer

: SP 1706534

: 2-14885

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Carbofuran	531.1	(CH 1773783-001)	MSD	ug/L	20.00	98.0 %	65-135	
Carooraran	331.1	(CH 1773703 001)	MSRPD	ug/L	20.00	0.37	<5 ≤5	
	531.1	06/08/17:208517SG	CCV	ug/L	20.00	116 %	80-120	
	55111	00,00,17,120001750	CCV	ug/L	10.00	97.9 %	80-120	
Methomyl	531.1	06/07/17:206733SG	Blank	ug/L		ND	<2	
			LCS	ug/L	20.00	98.9 %	80-120	
			MS	ug/L	20.00	96.4 %	65-135	
		(CH 1773783-001)	MSD	ug/L	20.00	97.0 %	65-135	
			MSRPD	ug/L	20.00	0.6%	≤53.1	
	531.1	06/08/17:208517SG	CCV	ug/L	20.00	101 %	80-120	
			CCV	ug/L	10.00	99.5 %	80-120	
Oxamyl	531.1	06/07/17:206733SG	Blank	ug/L		ND	<5	
			LCS	ug/L	20.00	96.8 %	80-120	
			MS	ug/L	20.00	90.5 %	65-135	
		(CH 1773783-001)	MSD	ug/L	20.00	90.6 %	65-135	
			MSRPD	ug/L	20.00	0.030	≤5	
	531.1	06/08/17:208517SG	CCV	ug/L	20.00	99.6 %	80-120	
			CCV	ug/L	10.00	99.8 %	80-120	
Glyphosate	547	06/02/17:206474SG	Blank	ug/L		ND	<20	
			LCS	ug/L	200.0	95.2 %	71-129	
			MS	ug/L	200.0	99.4 %	56-139	
		(VI 1742124-001)	MSD	ug/L	200.0	104 %	56-139	
			MSRPD	ug/L	200.0	4.6%	≤15	
	547	06/02/17:208073SG	CCV	ug/L	100.0	104 %	80-120	
			CCV	ug/L	200.0	101 %	80-120	
Endothall	548.1	06/06/17:206663SG	Blank	ug/L		ND	<40	
			LCS	ug/L	133.3	49.6 %	30-96	
		MACHINE DOWN RESIDENCE ROLLING RESIDEN	MS	ug/L	133.3	34.9 %	15-87	
		(SP 1706534-001)	MSD	ug/L	133.3	33.2 %	15-87	
			MSRPD	ug/L	133.3	2.3	≤40	
	548.1	06/09/17:208479SG	CCV	ug/L	1000	95.1 %	70-130	
			CCV	ug/L	2500	107 %	70-130	
Diquat Dibromide	549	06/06/17:206655SG	Blank	ug/L		ND	<2	
			LCS	ug/L	20.00	56.0 %	34-114	
			MS	ug/L	20.00	53.5 %	0-86	
		(VI 1742333-001)	MSD	ug/L	20.00	48.4 %	0-86	
			MSRPD	ug/L	20.00	10.1%	≤13	
	549.2	06/09/17:208531SG	CCV	ug/L	500.0	115 %	80-120	
D:	222	02/00/45 2222	CCV	ug/L	1000	95.0 %	80-120	
Diuron	632	06/02/17:205153caa	Blank	ug/L	1.000	ND	<0.1	
			LCS	ug/L	1.000	70.1 %	53-105	12.5
			BS	ug/L	1.000	48.9 %	53-105	436
			BSD BSRPD	ug/L	1.000 1.000	58.4 % 17.8%	53-105 ≤51	
	(22	06/12/17 20062020		ug/L				
	632	06/12/17:208630SG	CCV	ug/L	1000	98.8 %	90-110	
			CCV	ug/L	500.0	96.3 %	90-110	

Definition

: Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria. **CCV**

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery. MSD

June 21, 2017 Vandenberg Village CSD

Quality Control - Organic

Lab ID

Customer

: SP 1706534

Definition	
BS	: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not affecting analyte recovery.
BSD	: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not affecting analyte recovery.
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.
BSRPD	: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation and analysis.
ND	: Non-detect - Result was below the DOO listed for the analyte.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
360	: CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.
410	: Relative Percent Difference (RPD) not within Maximum Allowable Value (MAV). Data was accepted based on the LCS or CCV recovery.
435	: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
436	: Blank Spike (BS) not within Acceptance Range (AR). Data was accepted based on the LCS or CCV recovery.

Lab ID

Customer

: SP 1706534

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Metals								
Boron	200.7		MS	mg/L	4.000	110 %	75-125	
	200.7	(SP 1706534-001)	MSD	mg/L	4.000	100 %	75-125	
		(51 1/0000 / 001)	MSRPD	mg/L	4000	9.1%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	5.000	101 %	90-110	
			CCB	ppm	5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	0.013	0.1	
			CCV	ppm	5.000	101 %	90-110	
			CCB	ppm		0.018	0.1	
Calcium	200.7		MS	mg/L	12.00	95.6 %	75-125	
		(SP 1706534-001)	MSD	mg/L	12.00	87.4 %	75-125	
			MSRPD	mg/L	4000	1.4%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	25.00	102 %	90-110	
			CCB	ppm		-0.008	1	
			CCV	ppm	25.00	102 %	90-110	
			CCB	ppm		-0.005	1	
Copper	200.7		MS	ug/L	800.0	110 %	75-125	
		(SP 1706534-001)	MSD	ug/L	800.0	99.8 %	75-125	
			MSRPD	ug/L	4000	9.7%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	1.000	100 %	90-110	
			CCB	ppm		0.0004	0.01	
			CCV	ppm	1.000	101 %	90-110	
			CCB	ppm		0.0002	0.01	
Iron	200.7	CONTRACT THE SERVICE AT PROTOCOLS	MS	ug/L	4000	107 %	75-125	
		(SP 1706534-001)	MSD	ug/L	4000	99.4 %	75-125	
			MSRPD	ug/L	4000	6.2%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	5.000	102 %	90-110	
			CCB	ppm		0.0023	0.03	
			CCV	ppm	5.000	103 %	90-110	
			CCB	ppm	12.00	0.0053	0.03	
Magnesium	200.7	(CD 170(524 001)	MS	mg/L	12.00	106 %	75-125	
		(SP 1706534-001)	MSD	mg/L	12.00	95.9 %	75-125	
	200.7	06/01/17 20012016	MSRPD	mg/L	4000	4.1%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	25.00	99.4 %	90-110	
			CCB	ppm	25.00	0.0003	1	
			CCV	ppm	25.00	100 %	90-110	
Managanasa	200.7		CCB MS	ppm no/I	800.0	0.002 110 %	75-125	
Manganese	200.7	(SP 1706534-001)	MSD	ug/L ug/L	800.0	99.5 %	75-125	
		(31 1/00334-001)	MSRPD	ug/L ug/L	4000	8.8%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	1.000	101 %	90-110	
	200.7	00/01/17.200120710	CCB	ppm	1.000	0.00009	0.01	
			CCV	ppm	1.000	102 %	90-110	
			CCB	ppm	1.500	0.00009	0.01	
Potassium	200.7		MS	mg/L	12.00	112 %	75-125	
	200.7	(SP 1706534-001)	MSD	mg/L	12.00	101 %	75-125	
		**************************************	MSRPD	mg/L	4000	7.7%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	25.00	98.7 %	90-110	
	10000000000	The state of the s	CCB	ppm	ACTUAL ACTUAL	0.09	1	
			CCV	ppm	25.00	99.8 %	90-110	
			CCB	ppm		0.08	1	
Sodium	200.7		MS	mg/L	12.00	101 %	75-125	
(F) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S		(SP 1706534-001)	MSD	mg/L	12.00	91.1 %	75-125	
			MSRPD	mg/L	4000	1.3%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	25.00	99.2 %	90-110	
			CCB	ppm		0.44	1	
	ı	1	CCV	ppm	25.00	100 %	90-110	

Quality Control - Inorganic

Lab ID

Customer

: SP 1706534

: 2-14885

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Metals								
Sodium	200.7	06/01/17:208120AC	CCB	ppm		0.41	1	
Zinc	200.7		MS	ug/L	800.0	114 %	75-125	
		(SP 1706534-001)	MSD	ug/L	800.0	104 %	75-125	
			MSRPD	ug/L	4000	8.2%	≤20.0	
	200.7	06/01/17:208120AC	CCV	ppm	1.000	104 %	90-110	
			CCB	ppm	1.000	0.0011	0.02 90-110	
			CCV CCB	ppm ppm	1.000	104 % 0.0018	0.02	
Aluminum	200.8		MS	ug/L	5.000	93.8 %	75-125	
		(SP 1706534-001)	MSD	ug/L	5.000	139 %	75-125	435
			MSRPD	ug/L	5.000	2.2	≤10	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	105 %	90-110	
			ICB	ppb	50.00	0.06	10	
			CCV CCB	ppb ppb	50.00	106 % 0.1	90-110 10	
Antimony	200.8		MS	ug/L	5.000	109 %	75-125	
2 maniony	200.0	(SP 1706534-001)	MSD	ug/L	5.000	121 %	75-125	
			MSRPD	ug/L	5.000	10.1%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	98.1 %	90-110	
			ICB	ppb		0.12	1	
			CCV	ppb	50.00	92.6 %	90-110	
A	200.0		CCB	ppb	5,000	0.05	1	
Arsenic	200.8	(SP 1706534-001)	MS MSD	ug/L ug/L	5.000 5.000	131 % 158 %	<1/ ₄ <1/ ₄	
		(SF 1700554-001)	MSRPD	ug/L ug/L	5.000	3.9%	<74 ≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	100 %	90-110	
	35/25/8000/81/8000		ICB	ppb		0.04	2	
			CCV	ppb	50.00	93.3 %	90-110	
			CCB	ppb		0.02	2	
Barium	200.8	(CD 150 (52 1 001)	MS	ug/L	5.000	101 %	75-125	
		(SP 1706534-001)	MSD MSRPD	ug/L ug/L	5.000 5.000	148 % 6.3%	<1/₄ ≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	97.7 %	90-110	
	200.0	00/01/17.200127710	ICB	ppb	30.00	0.008	0.2	
			CCV	ppb	50.00	95.5 %	90-110	
			CCB	ppb		0.013	0.2	
Beryllium	200.8		MS	ug/L	5.000	97.2 %	75-125	
		(SP 1706534-001)	MSD	ug/L	5.000	107 %	75-125	
	200.8	06/01/17:208127AC	MSRPD	ug/L	5.000	9.8%	≤20	
	200.8	06/01/17:208127AC	ICV ICB	ppb ppb	50.00	95.8 % 0.018	90-110 0.2	
			CCV	ppb	50.00	101 %	90-110	
			CCB	ppb		0.001	0.2	
Cadmium	200.8		MS	ug/L	5.000	105 %	75-125	
		(SP 1706534-001)	MSD	ug/L	5.000	119 %	75-125	
		0.510.111.	MSRPD	ug/L	5.000	11.9%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	101 %	90-110	
			ICB CCV	ppb ppb	50.00	0.002 95.9 %	0.2 90-110	
			CCV	ppb ppb	30.00	0.001	0.2	
Chromium	200.8	1	MS	ug/L	5.000	118 %	75-125	
	200.0	(SP 1706534-001)	MSD	ug/L ug/L	5.000	125 %	75-125	
			MSRPD	ug/L	5.000	3.0%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	98.0 %	90-110	

Quality Control - Inorganic

Lab ID

Customer

: SP 1706534

: 2-14885

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Metals								
Chromium	200.8	06/01/17:208127AC	ICB	ppb		0.003	1	
			CCV	ppb	50.00	92.8 %	90-110	
			CCB	ppb		0.004	1	
Lead	200.8		MS	ug/L	5.000	108 %	75-125	
		(SP 1706534-001)	MSD	ug/L	5.000	119 %	75-125	
			MSRPD	ug/L	5.000	9.0%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	95.5 %	90-110	
			ICB	ppb	50.00	0.005	0.5	
			CCV CCB	ppb ppb	50.00	91.8 % 0.003	90-110 0.5	
Nickel	200.8		MS	ug/L	5.000	106 %	75-125	
Nickei	200.8	(SP 1706534-001)	MSD	ug/L ug/L	5.000	117 %	75-125	
		(SI 1700334-001)	MSRPD	ug/L ug/L	5.000	7.2%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	97.9 %	90-110	
	200.0		ICB	ppb		-0.01	1	
			CCV	ppb	50.00	92.5 %	90-110	
			CCB	ppb		-0.007	1	
Selenium	200.8		MS	ug/L	5.000	122 %	75-125	10.00000
		(SP 1706534-001)	MSD	ug/L	5.000	133 %	75-125	435
			MSRPD	ug/L	5.000	5.5%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	102 %	90-110	
			ICB	ppb	50.00	0.21	1	
			CCV CCB	ppb	50.00	96.6 % 0.1	90-110 1	
Silver	200.8		MS	ppb ug/L	5.000	91.2 %	75-125	
Silvei	200.8	(SP 1706534-001)	MSD	ug/L ug/L	5.000	104 %	75-125	
		(51 1700554-001)	MSRPD	ug/L ug/L	5.000	0.62	√3=123 ≤1	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	100 %	90-110	
			ICB	ppb		0.0080	0.25	
			CCV	ppb	50.00	105 %	90-110	
			CCB	ppb		0.0070	0.25	
Thallium	200.8		MS	ug/L	5.000	111 %	75-125	
		(SP 1706534-001)	MSD	ug/L	5.000	122 %	75-125	
			MSRPD	ug/L	5.000	10.0%	≤20	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	98.3 %	90-110	
			ICB CCV	ppb	50.00	0.002 93.9 %	0.2 90-110	
			CCB	ppb ppb	30.00	0.002	0.2	
Vanadium	200.8		MS	ug/L	5.000	114 %	75-125	
		(SP 1706534-001)	MSD	ug/L	5.000	123 %	75-125	
	L		MSRPD	ug/L	5.000	0.44	≤2	
	200.8	06/01/17:208127AC	ICV	ppb	50.00	97.8 %	90-110	
			ICB	ppb		0.01	2	
			CCV	ppb	50.00	92.3 %	90-110	
1.6	2/5/	06/00/17 006500 : ~	CCB	ppb		0.01	2	
Mercury	245.1	06/02/17:206503AC	Blank	ug/L	0.2000	ND	< 0.02	
			LCS MS	ug/L	0.2000 0.2000	93.6 % 93.6 %	85-115 75-125	
		(STK1736042-002)	MSD	ug/L ug/L	0.2000	93.6 %	75-125	
		(5111/50072-002)	MSRPD	ug/L ug/L	0.2000	1.6%	√3-123 ≤20	
	245.1	06/02/17:208134AC	CCV	ppt	200.0	97.2 %	90-110	
	2,3.1	- 5.02.17.20015 INC	CCB	ppt		1.8	20	
			CCV	ppt	200.0	99.3 %	90-110	
			CCB	ppt		-0.8	20	

Quality Control - Inorganic

Lab ID

Customer

: SP 1706534

: 2-14885

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Wet Chem								
Color	2120B	(SP 1706544-001)	Dup	units		0.0	5	
	2120B	06/01/17:208140jmg	CCB	units		0.00	5.0	
			CCV	units	10.00	100 %	90-110	
Turbidity	2130B	(SP 1706534-001)	Dup	NTU		0.7%	20	
	2130B	06/01/17:208106jba	CCV	NTU	10.00	109 %	90-110	
			CCB	NTU	10.00	0.090	0.1	
			CCV CCB	NTU NTU	10.00	109 % 0.093	90-110 0.1	
Odor	2150B	(CC 1781917-001)	Dup	TON		0.093	1	
Alkalinity (as CaCO3)	2320B	(STK1736579-001)	Dup	mg/L		8.1	10	
rikaminty (as eaces)	2320B		CCV	mg/L	234.9	95.5 %	90-110	
	2320B	00/01/17.2000/37tiviB	CCV	mg/L mg/L	234.9	102 %	90-110	
Bicarbonate	2320B	(STK1736579-001)	Dup	mg/L	20 113	19.6%	10	440
Carbonate	2320B	(STK1736579-001)	Dup	mg/L		0.0	10	
Hydroxide	2320B	(STK1736579-001)	Dup	mg/L		0.0	10	
Conductivity	2510B	06/02/17:208102JMG	ICB	umhos/cm		0.07	1	
			ICV	umhos/cm	999.0	100 %	95-105	
			CCV	umhos/cm	999.0	101 %	95-105	
E. C.	2510B	06/02/17:206486jmg	Blank	umhos/cm		ND	<1	
		(CC 1781949-001)	Dup	umhos/cm		0.0%	5	
Total Dissolved Solids (TFR)	2540CE	06/01/17:206462CTL	Blank	mg/L	007.0	ND 00.40/	<20	
		(STV 1726604 001)	LCS	mg/L	997.8	99.4 %	90-110	
		(STK1736604-001) (STK1736603-002)	Dup Dup	mg/L mg/L		1.9% 2.2%	5 5	
Chloride	300.0	06/01/17:206519MCA	Blank	mg/L mg/L		ND	<1	
Cinoriae	300.0	00/01/17.200319WC11	LCS	mg/L	25.00	108 %	90-110	
			MS	mg/L	50.00	104 %	85-121	
		(VI 1742026-004)	MSD	mg/L	50.00	105 %	85-121	
			MSRPD	mg/L	10.00	1.1%	≤19	
			MS	mg/L	50.00	99.2 %	85-121	
		(STK1735679-007)	MSD	mg/L	50.00	100 %	85-121	
	200.0	06/01/17-200126MCA	MSRPD	mg/L	10.00	1.0% 0.00	≤19 1	
	300.0	06/01/17:208136MCA	ICB ICV	mg/L mg/L	25.00	106 %	90-110	
			CCB	mg/L mg/L	23.00	0.12	1	
			CCV	mg/L	25.00	106 %	90-110	
Fluoride	300.0	06/01/17:206519MCA	Blank	mg/L		ND	< 0.1	
			LCS	mg/L	2.500	109 %	90-110	
			MS	mg/L	5.000	105 %	87-120	
		(VI 1742026-004)	MSD	mg/L	5.000	106 %	87-120	
			MSRPD MS	mg/L	10.00	1.4% 104 %	≤16 87-120	
		(STK1735679-007)		mg/L	5.000			
		(STK1/330/9-00/)	MSD MSRPD	mg/L mg/L	5.000	105 % 1.1%	87-120 ≤16	
	300.0	06/01/17:208136MCA	ICB	mg/L	20.00	0.000	0.1	
			ICV	mg/L	2.500	108 %	90-110	
			CCB	mg/L		0.000	0.1	
			CCV	mg/L	2.500	108 %	90-110	
Nitrate	300.0	06/01/17:206519MCA	Blank	mg/L		ND	< 0.5	
			LCS	mg/L	20.00	110 %	90-110	
		(NH 174000 (00 C)	MS	mg/L	40.00	106 %	85-119	
		(VI 1742026-004)	MSD MSRPD	mg/L	40.00 10.00	107 %	85-119 ≤19	
			MSRPD MS	mg/L mg/L	40.00	1.2% 105 %	≤19 85-119	

June 21, 2017 Vandenberg Village CSD

Customer : 2-14885

Lab ID

: SP 1706534

Quality Control - Inorganic

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Wet Chem								
Nitrate	300.0	(STK1735679-007)	MSD	mg/L	40.00	106 %	85-119	
		(51111700077)	MSRPD	mg/L	10.00	1.1%	≤19	
	300.0	06/01/17:208136MCA	ICB	mg/L		0.000	0.5	
	200.0	00/01/1/1200150111011	ICV	mg/L	20.00	108 %	90-110	
			CCB	mg/L	20,00	0.000	0.5	
			CCV	mg/L	20.00	108 %	90-110	
Nitrite	300.0	06/01/17:206519MCA	Blank	mg/L		ND	< 0.5	
			LCS	mg/L	15.00	108 %	90-110	
			MS	mg/L	30.00	104 %	74-126	
		(VI 1742026-004)	MSD	mg/L	30.00	106 %	74-126	
		(11111120001)	MSRPD	mg/L	10.00	1.3%	≤20	
			MS	mg/L	30.00	104 %	74-126	
		(STK1735679-007)	MSD	mg/L	30.00	106 %	74-126	
		(51111/550/7 007)	MSRPD	mg/L	10.00	1.2%	≤20	
	300.0	06/01/17:208136MCA	ICB	mg/L	10.00	0.000	0.5	
	300.0	00/01/17:200130141671	ICV	mg/L mg/L	15.00	107 %	90-110	
			CCB	mg/L mg/L	15.00	0.000	0.5	
			CCV	mg/L	15.00	108 %	90-110	
Sulfate	300.0	06/01/17:206519MCA	Blank	mg/L mg/L	13.00	ND	<0.5	
Sunate	300.0	00/01/17:200319NICA	LCS	mg/L mg/L	50.00	109 %	90-110	
			MS		100.0	105 %	82-124	
		(VI 1742026-004)	MSD	mg/L	100.0		82-124	
		(V11/42020-004)	MSRPD	mg/L mg/L	100.0	106 % 1.4%	62-124 ≤23	
			MS		100.0		82-124	
		(STV 1725670 007)	MSD	mg/L		100 %	82-124	
		(STK1735679-007)	MSRPD	mg/L mg/L	100.0 10.00	101 % 1.1%	82-124 ≤23	
	300.0	06/01/17:208136MCA			10.00			
	300.0	06/01/17:208136MCA	ICB ICV	mg/L	50.00	0.095	0.5 90-110	
				mg/L	50.00	107 %		
			CCB	mg/L	50.00	0.266	0.5	
D 11	214.0	06/05/15 006555 164	CCV	mg/L	50.00	108 %	90-110	
Perchlorate	314.0	06/07/17:206777MCA	Blank	ug/L	25.00	ND	<2	
			LCS	ug/L	25.00	99.9 %	85-115	
		(00 150 (501 001)	MS	ug/L	25.00	88.2 %	80-120	
		(SP 1706534-001)	MSD	ug/L	25.00	94.1 %	80-120	
			MSRPD	ug/L	25.00	6.5%	≤15	
	314.0	06/08/17:208451MCA	CCB	ppb		0.00	2.0	
			CCV	ppb	10.00	99.1 %	85-115	
			CCB	ppb		0.00	2.0	
A 2007 - 20 1007			CCV	ppb	10.00	99.7 %	85-115	
MBAS	5540C	06/01/17:208253AMM		mg/L		0.000	0.1	
			CCV	mg/L	10.00	100 %	99-101	
MBAS Screen	5540C		MS	mg/L	10.00	100 %	90-110	
		(CC 1781918-002)	MSD	mg/L	10.00	100 %	90-110	
			MSRPD	mg/L	10.00	0.0	≤0.1	

Definition

MS

ICV : Initial Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

ICB : Initial Calibration Blank - Analyzed to verify the instrument baseline is within criteria.

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovers.

: Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample

matrix affects analyte recovery.

MSD : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.

 June 21, 2017
 Lab ID
 : SP 1706534

 Vandenberg Village CSD
 Customer
 : 2-14885

Quality Control - Inorganic

Definition	
Dup	: Duplicate Sample - A random sample with each batch is prepared and analyzed in duplicate. The relative percent difference is an indication of precision for the preparation and analysis.
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.
ND	: Non-detect - Result was below the DQO listed for the analyte.
<1/4	: High Sample Background - Spike concentration was less than one forth of the sample concentration.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
435	: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
440	: Sample nonhomogeneity may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

June 21, 2017 Lab ID : SP 1706534 Vandenberg Village CSD Customer : 2-14885

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	06/06/17:208378aat	CCV	cpm	8391	39.2 %	35-47	
				CCB	cpm		0.0600	0.17	
Gross Alpha		900.0	06/05/17:206557aat	Blank	pCi/L		0.32	3	
				LCS	pCi/L	108.2	84.4 %	75-125	
				MS	pCi/L	108.2	63.6 %	60-140	
			(SP 1706610-001)	MSD	pCi/L	108.2	73.9 %	60-140	
				MSRPD	pCi/L	108.2	14.9%	≤30	
Beta		Ra - 05	06/13/17:208747emv	CCV	cpm	8763	88.2 %	84-94	
				CCB	cpm		0.4600	0.51	
Ra 228		Ra - 05	06/08/17:206549emv	RgBlk	pCi/L		0.11	3	
				LRS	pCi/L	37.65	87.7 %	65-108	
				BS	pCi/L	37.65	96.9 %	75-125	
				BSD	pCi/L	37.65	103 %	75-125	
				BSRPD	pCi/L	37.65	5.7%	≤25	
Definition									
CCV	: Continuing Cali	bration Verifica	tion - Analyzed to verif	y the instru	ment calibration	on is within	criteria.		
CCB	: Continuing Cali	bration Blank -	Analyzed to verify the	instrument b	aseline is with	hin criteria.			
Blank			rify that the preparation				tion to the sam	ples.	
RgBlk			red to correct for any rea						
LCS			ample - Prepared to veri					e recovery.	
LRS			 Prepared to establish t 						
MS			ole is spiked with a know	wn amount o	of analyte. The	e recoveries	are an indication	on of how the	at sample
1115	matrix affects and						2		
MSD			MSD pair - A random sa			with a know	n amount of ar	nalyted. The	recoveries
1.1.0.2			ple matrix affects analy						
BS			d with a known amount	of analyte.	It is prepared	to verify tha	t the preparation	on process is	not
	affecting analyte		an '				C 1 . T.		10 1
BSD	: Blank Spike Du	plicate of BS/B	SD pair - A blank dupli	cate is spike	d with a know	n amount of	f analyte. It is p	prepared to v	erity that

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation

: Data Quality Objective - This is the criteria against which the quality control data is compared.

the preparation process is not affecting analyte recovery.

BSD

MSRPD

BSRPD DQO

and analysis.

June 20, 2017

Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Subject: Subcontract Analysis for FGL Lab No. SP 1706534

Enclosed please find results for the following sample(s) which were received by FGL.

• Sub Organic-EPA 525

Please note that this analysis was performed by Eurofins Eaton Analytical, Inc. (ELAP Certified Laboratory)

Thank you for using FGL Environmental.

Sincerely,

Cindy Aguirre Digitally signed by Cindy Aguirre Title: Customer Service Rep Date: 2017-06-20

Enclosure

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

AT-1807

Laboratory Report

for

FGL Environmental, Inc. 853 Corporation Street Santa Paula, CA 93060 Attention: Cindy Aguirre

Fax: 805-525-4172

Date of Issue 06/20/2017

EUROFINS EATON ANALYTICAL, INC.

MP6E: Alicia Del Carlo

Project Manager

Report: 663939 Project: DRINKING

Group: ORGANICS - EPA 500's

^{*} Accredited in accordance with TNI 2009 and ISO/IEC 17025:2005.

^{*} Laboratory certifies that the test results meet all TNI 2009 and ISO/IEC 17025:2005 requirements unless noted under the individual analysis.

^{*} Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.

^{*} Test results relate only to the sample(s) tested.

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Arizona	AZ0778	Montana	Cert 0035
Arkansas	Certified	Nebraska	Certified
California-Monrovia- ELAP	2813	Nevada	CA00006-2016
California-Colton- ELAP	2812	New Hampshire *	2959
California-Folsom- ELAP	2820	New Jersey *	CA 008
California-Fresno- ELAP	2966	New Mexico	Certified
Colorado	Certified	New York *	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida *	E871024	Oregon (Primary AB) *	ORELAP 4034
Georgia	947	Pennsylvania *	68-565
Guam	16-003r	Puerto Rico	Certified
Hawaii	Certified	Rhode Island	LAO00326
Idaho	Certified	South Carolina	87016
Illinois *	200033	South Dakota	Certified
Indiana	C-CA-01	Tennessee	TN02839
Kansas *	E-10268	Texas *	T104704230-15-9
Kentucky	90107	Utah *	CA000062016-10
Louisiana *	LA16003	Vermont	VT0114
Maine	CA0006	Virginia *	460260
Maryland	224	Washington	C838
Commonwealth of Northern Marianas Is.	MP0004	Wyoming	Certified
Massachusetts	M-CA006	EPA Region 5	Certified
Michigan	9906	Los Angeles County Sanitation Districts	10264

^{*} NELAP/TNI Recognized Accreditation Bodies

ISO 17025 Accredited Method List

The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ANAB.

Refer to Certificate and scope of accreditation (AT 1807) found at: http://www.eatonanalytical.com

	Kele	To certifica	te and scop	e of accredita
SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Environ- mental (Drinking Water)	Environ- mental (Waste Water)	Water as a Component of Food and Bev/Bev/ Bottled Water
1,4-Dioxane	EPA 522	Х		X
2,3,7,8-TCDD	Modified EPA 1613B	х		х
Acrylamide	In House Method (2440)	X		X
Alkalinity Ammonia	SM 2320B EPA 350.1	Х	X X	x x
Ammonia	SM 4500-NII3 II		X	×
Anions and DBPs by IC	EPA 300.0	х	x	x
Anions and DBPs by IC	EPA 300.1	х		х
Asbestos	EPA 100.2	х	X	
Bicarbonate Alkalinity as HCO3	SM 2320B	x	x	х
BOD / CBOD	SM 5210B		х	х
Bromate	In House Method (2447)	х		х
Carbamates	EPA 531.2	Х		Х
Carbonate as CO3	SM 2330B	X	Х	X
Carbonyls COD	EPA 556 EPA 410.4 / SM 5220D	Х	x	х
Chloramines	SM 4500-CL G	х	X	х
Chlorinated Acids	EPA 515.4	х		х
Chlorinated Acids	EPA 555	x		x
Chlorine Dioxide	SM 4500-CLO2 D	х		х
Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	х	х	х
Conductivity	EPA 120.1		X	,,
Conductivity	SM 2510B	x	X	x
Corrosivity (Langelier Index)	SM 2330B	PC104		х
Cryptosporidium	EPA 1623	х	0,00	х
Cyanide, Amenable	SM 4500-CN G	X	X	v
Cyanide, Free Cyanide, Total	SM 4500CN F EPA 335.4	x x	X X	X X
Cyanogen Chloride	In House Method (2470)	×	^	×
(screen) Diquat and Paraquat	EPA 549.2	х		х
DBP/HAA	SM 6251B	X		X
Dissolved Oxygen	SM 4500-O G		х	X
DOC	SM 5310C	х		х
E. Coli	(MTF/EC+MUG)	Х		Х
E. Coli	CFR 141.21(f)(6)(i)	X		х
E. Coli	SM 9223		X	
E. Coli (Enumeration)	SM 9221B.1/ SM 9221F	X		х
E. Coli (Enumeration)	SM 9223B	х		х
EDB/DCBP	EPA 504.1	х		
EDB/DBCP and DBP EDTA and NTA	EPA 551.1 In House Method (2454)	X X		X X
Endothall	EPA 548.1	x		×
Endothall	In-house Method (2445)	х		х
Enterococci	SM 9230B	х	х	
Fecal Coliform	SM 9221 E (MTF/EC)	х		
Fecal Coliform	SM 9221C, E (MTF/EC)	1	х	
Fecal Coliform (Enumeration)	SM 9221E (MTF/EC)	х		х
Fecal Coliform with Chlorine Present	SM 9221E		х	
Fecal Streptococci	SM 9230B	х	x	
Fluoride	SM 4500-F C	х	х	х
Giardia	EPA 1623	х		х
Glyphosate	EPA 547	х		х
Gross Alpha/Beta	EPA 900.0	X	X	Х
Gross Alpha Coprecipitation	SM 7110 C	х	х	х
	SM 2340B	X	X	X
Hardness				
Hardness Heterotrophic Bacteria Heterotrophic Bacteria	In House Method (2439) SM 9215 B	x x		x x

SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Environ- mental (Drinking Water)	Environ- mental (Waste Water)	Water as a Component of Food and Bev/Bev/ Bottled Water
Hexavalent Chromium	EPA 218.7	X		Х
Hexavalent Chromium	SM 3500-Cr B		X	
Hormones	EPA 539	X		х
Hydroxide as OH Calc.	SM 2330B	X		х
Kjeldahl Nitrogen	EPA 351.2		X	
Legionella	CDC Legionella	x		X
Mercury	EPA 245.1	X	Х	х
Metals	EPA 200.7 / 200.8	х	х	х
Microcystin LR	ELISA (2360)	X		х
NDMA	EPA 521	х		х
NDMA	TQ In house method based on EPA 521 (2425)	x		х
Nitrate/Nitrite Nitrogen	EPA 353.2	X	X	x
OCL, Pesticides/PCB	EPA 505	X		X
Ortho Phosphate	EPA 365.1	х	Х	х
Ortho Phosphate	SM 4500P E			х
Ortho Phosphorous	SM 4500P E	X		
Oxyhalides Disinfection				.,
Byproducts	EPA 317.0	X		Х
Perchlorate	EPA 331.0	Х		х
Perchlorate (low and high)	EPA 314.0	х		х
Perfluorinated Alkyl Acids	EPA 537	х		х
рН	EPA 150.1	X		
pH	SM 4500-H+B	X	Х	Х
Phenylurea Pesticides/	In House Method, based on EPA	x		x
Herbicides Pseudomonas	532 (2448) IDEXX Pseudalert (2461)	x		х
Radium-226	GA Institute of Tech	X		х
Radium-228	GA Institute of Tech	X		x
Radon-222	SM 7500RN	X		x
Residue, Filterable	SM 2540C	x	х	X
Residue, Non-filterable	SM 2540D	^	x	^
Residue, Total	SM 2540B		v	х
			X X	χ
Residue, Volatile	EPA 160.4	.,	Х	26
Semi-VOC	EPA 525.2	Х		X
Semi-VOC	EPA 625		X	Х
Silica	SM 4500-Si D	X	Х	
Silica	SM 4500-SiO2 C	X	X	
Sulfide	SM 4500-S ⁼ D	10.0	х	
Sulfite	SM 4500-SO ³ B	X	Х	х
Surfactants	SM 5540C	X	X	х
Taste and Odor Analytes	SM 6040E	X		X
Total Coliform (P/A)	SM 9221 A, B	X		х
Total Coliform (Enumeration)	SM 9221 A, B, C	x		х
Total Coliform / E. coli Total Coliform	Colisure SM 9223 SM 9221B	х	х	х
Total Coliform with Chlorine Present	SM 9221B		х	
Total Coliform / E.coli (P/A and Enumeration)	SM 9223	х		х
TOC	SM 5310C	X	х	х
TOX	SM 5320B		х	
Total Phenols	EPA 420.1		x	
Total Phenols	EPA 420.4	X	Х	х
Total Phosphorous	SM 4500 P E		Х	
Turbidity	EPA 180.1	Х	Х	х
Turbidity	SM 2130B	X	Х	
Uranium by ICP/MS	EPA 200.8	X		х
UV 254	SM 5910B	х		
VOC	EPA 524.2/EPA 524.3	X		х
VOC	EPA 624		Х	х
VOC	EPA SW 846 8260	X		x
VOC	In House Method (2411)	X		х
Veget and Mold	SM 0610	v		

SM 9610

750 Royal Oaks Dr., Ste 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com

Yeast and Mold

Acknowledgement of Samples Received

Addr: **FGL Environmental, Inc.** 853 Corporation Street Santa Paula, CA 93060

orporation Street Folder #: 663939

Project: DRINKING (SP 1706534) Sample Group: ORGANICS - EPA 500's

Attn: Cindy Aguirre Phone: 805-392-2012

Project Manager: Alicia Del Carlo Phone: 559-797-1931 Sampler: Rick Hoffman

Client ID: FGL

The following samples were received from you on **June 02, 2017** at **1226**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using Eurofins Eaton Analytical, Inc..

Sample #	Sample ID	Sample Date
201706020341	TRAVEL BLANK - Hold	05/31/2017 0000
	@525_FGL_SHORT TBC	
201706020342	Old Fire Station Test Well	05/31/2017 1230
	@525_FGL_SHORT	
	- Frank - Fran	

Test Description

@525_FGL_SHORT -- Semivolatiles by GCMS

@525_FGL_SHORT TBC -- Semivolatiles by GCMS

Reported: 06/20/2017

Subcontract to Eurofins Eaton Analytical, Inc.

۳		_		 _	 -	9	1,11	1000	
Man Rell						4		Time:	Time:
								Date:	Date:
		1						Relinquished	Received By:
		1			-			Time:	Time:
					3			Date:	Date: (42/17
								Relinquished	Received By:
						G.S.		Time: Reli	Time: Rec
	Sub Organic-EPA 525 ****Only Run Travel Blank if Needed***	1	1					Date:	Date:
	Bacti Type: Other(O) System(SYS) Source(SR) Waste(W) Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Other(O) Special(SPL)							-9	>
	Potable (P) Non-Potable (MP) Ag Water (Ag)				+			- (2)	🔿
		>	GW		+		ás	The second	GSO
	Type of Sampling: Composite(C) Grab(G) Type of Sample **SEE REVERSE SIDE**		5 5		+			Relinquished	Received By:
	Method of Sampling: Composite(C) Grab(G)	00:00	12:30					M	M.
	Time:	05/31/17	05/31/17						
	Fruit Growers Laboratory, Inc. FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 93060-3005 Fax: Person: Name: SP 1706534 - (2-148 e Order Number: r(s) Rick Hoffman mber: Location Description	Travel Blank	Old Fire Station Test Well					kS:	
	Client: Address: Phone: Contact P Project N Purchase Sampler(3 Composit	0	-		i in			Remarks:	

800-322-5555 www.gso.com

Ship From

FRUIT GROWERS LABORATORY, INC. BRANDON QUELL 853 CORPORATION ST SANTA PAULA, CA 93060

Ship To
EUROFINS EATON ANALYTICAL
ATTN: MONICA VANNATTA
750 ROYAL OAKS DRIVE STE#100
MONROVIA, CA 91016

COD: \$0.00
Weight: 36 lb(s)
Reference:
SP1706534-6/1/17-BQ
Delivery Instructions:

Signature Type: REQUIRED

Tracking #: 536344675

PDS

D91006A

67616510

Print Date: 6/1/2017 4:18 PM

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer. Securely attach this label to your package, do not cover the barcode.

Laboratory Comments

Report: 663939

Project: DRINKING (SP 1706534) **Group**: ORGANICS - EPA 500's

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

FGL Environmental, Inc. Cindy Aguirre 853 Corporation Street Santa Paula, CA 93060

Flags Legend:

LK - The associated blank spike recovery was above method acceptance limits. This target analyte was not detected in the sample.

Laboratory Hits

Report: 663939

Project: DRINKING (SP 1706534) **Group**: ORGANICS - EPA 500's

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

FGL Environmental, Inc.Cindy Aguirre
853 Corporation Street
Santa Paula, CA 93060

Samples Received on: 06/02/2017 1226

The state of the s	Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL	
--	----------	---------	-----------	--------	-------------	-------	-----	--

Laboratory Data

Report: 663939

Project: DRINKING (SP 1706534) **Group:** ORGANICS - EPA 500's

Tel: (626) 386-1100 Fax: (866) 988-3757

1 800 566 LABS (1 800 566 5227)

FGL Environmental, Inc. Cindy Aguirre 853 Corporation Street Santa Paula, CA 93060

Samples Received on: 06/02/2017 1226

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
Old Fire	Station Tes	t Well (20170	6020342)			Samp	led on 05/31	/2017 123	0
		EPA 525.2 -	Semivolatiles	by GCMS					
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Benzo(a)pyrene	ND	ug/L	0.02	1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Di-(2-Ethylhexyl)adipate	ND (LK)	ug/L	0.6	1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Di(2-Ethylhexyl)phthalate	ND	ug/L	0.6	1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	1,3-Dimethyl-2-nitrobenzene	83	%		1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Acenaphthene-d10	81	%		1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Chrysene-d12	82	%		1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Perylene-d12	88	%		1
06/12/17	06/16/17 4:35	1002226	1003631	(EPA 525.2)	Phenanthrene-d10	80	%		1

Laboratory QC Summary

Report: 663939

Project: DRINKING (SP 1706534) **Group:** ORGANICS - EPA 500's

Analyzed by: JWC Analyzed by: JWC

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

FGL Environmental, Inc.

Semivolatiles by GCMS

Prep Batch: 1002226 Analytical Batch: 1003631 Analysis Date: 06/16/2017

201706020341 TRAVEL BLANK - Hold 201706020342 Old Fire Station Test Well

Tel: (626) 386-1100 Fax: (866) 988-3757

1 800 566 LABS (1 800 566 5227)

Report: 663939

Project: DRINKING (SP 1706534) Group: ORGANICS - EPA 500's

FGL Environmental, Inc.

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
Semivolatiles by 0	SCMS by EPA 525.2								
Prep Batch:	1002226 Analytical Batch: 1003631					An	alysis Date:	06/15/2017	
LCS1	1,3-Dimethyl-2-nitrobenzene (S)			93.6	%	94	(70-130)		
LCS2	1,3-Dimethyl-2-nitrobenzene (S)			93.7	%	94	(70-130)		
MBLK	1,3-Dimethyl-2-nitrobenzene (S)			90.0	%	90	(70-130)		
MRL_CHK	1,3-Dimethyl-2-nitrobenzene (S)			88.5	%	89	(70-130)		
MS_201706011232	1,3-Dimethyl-2-nitrobenzene (S)			92.2	%	92	(70-130)		
LCS1	Acenaphthene-d10 (I)			92.1	%	92	(50-150)		
LCS2	Acenaphthene-d10 (I)			87.7	%	88	(50-150)		
MBLK	Acenaphthene-d10 (I)			93.7	%	94	(50-150)		
MRL_CHK	Acenaphthene-d10 (I)			83.4	%	83	(50-150)		
MS_201706011232	Acenaphthene-d10 (I)			105	%	105	(50-150)		
LCS1	Benzo(a)pyrene		2	2.21	ug/L	111	(70-130)		
LCS2	Benzo(a)pyrene		2	2.18	ug/L	109	(70-130)	20	1.4
MBLK	Benzo(a)pyrene			<0.01	ug/L				
MRL_CHK	Benzo(a)pyrene		0.02	0.0190	ug/L	95	(50-150)		
MS_201706011232	Benzo(a)pyrene	ND	2	2.03	ug/L	101	(70-130)		
LCS1	Chrysene-d12 (I)			99.7	%	100	(50-150)		
LCS2	Chrysene-d12 (I)			92.3	%	92	(50-150)		
MBLK	Chrysene-d12 (I)			96.8	%	97	(50-150)		
MRL_CHK	Chrysene-d12 (I)			81.2	%	81	(50-150)		
MS_201706011232	Chrysene-d12 (I)			105	%	105	(50-150)		
LCS1	Di-(2-Ethylhexyl)adipate		2	2.62	ug/L	<u>131</u>	(70-130)		
LCS2	Di-(2-Ethylhexyl)adipate		2	2.58	ug/L	129	(70-130)	20	1.5
MBLK	Di-(2-Ethylhexyl)adipate			<0.15	ug/L				
MRL_CHK	Di-(2-Ethylhexyl)adipate		0.3	0.302	ug/L	101	(50-150)		
MS_201706011232	Di-(2-Ethylhexyl)adipate	ND	2	2.23	ug/L	111	(70-130)		
LCS1	Di(2-Ethylhexyl)phthalate		2	2.30	ug/L	115	(70-130)		
LCS2	Di(2-Ethylhexyl)phthalate		2	2.32	ug/L	116	(70-130)	20	0.43
MBLK	Di(2-Ethylhexyl)phthalate			<0.15	ug/L				
MRL_CHK	Di(2-Ethylhexyl)phthalate		0.6	0.689	ug/L	115	(50-150)		
MS_201706011232	Di(2-Ethylhexyl)phthalate	ND	2	2.01	ug/L	100	(70-130)		
LCS1	Perylene-d12 (S)			101	%	101	(70-130)		
LCS2	Perylene-d12 (S)			98.9	%	99	(70-130)		
MBLK	Perylene-d12 (S)			82.3	%	82	(70-130)		
MRL_CHK	Perylene-d12 (S)			80.3	%	80	(70-130)		
MS_201706011232	Perylene-d12 (S)			94.8	%	95	(70-130)		

Spike recovery is already corrected for native results.

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>.

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used.

RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.

(I) - Indicates internal standard compound.

Laboratory QC

Report: 663939

Project: DRINKING (SP 1706534) Group: ORGANICS - EPA 500's

Tel: (626) 386-1100 Fax: (866) 988-3757

1 800 566 LABS (1 800 566 5227)

FGL Environmental, Inc.

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
LCS1	Phenanthrene-d10 (I)			94.2	%	94	(50-150)		
LCS2	Phenanthrene-d10 (I)			86.4	%	86	(50-150)		
MBLK	Phenanthrene-d10 (I)			91.6	%	92	(50-150)		
MRL_CHK	Phenanthrene-d10 (I)			84.4	%	84	(50-150)		
MS_201706011232	Phenanthrene-d10 (I)			104	%	104	(50-150)		

June 26, 2017

Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Subject: Subcontract Analysis for FGL Lab No. SP 1706534

Enclosed please find results for the following sample(s) which were received by FGL.

• Subcontracted - Dioxin, 2,3,7,8 - TCDD by EPA 1613

Please note that this analysis was performed by Vista Analytical Laboratory

Thank you for using FGL Environmental.

Sincerely,

Cindy Aguirre Digitally signed by Cindy Aguirre Title: Customer Service Rep Date: 2017-06-26

Enclosure

June 24, 2017

Vista Work Order No. 1700685

Ms. Cindy Aguirre FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 93060-3005

Dear Ms. Aguirre,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on June 02, 2017. This sample set was analyzed on a standard turn-around time, under your Project Name 'SP 1706534 - (2-14885)'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com

Work Order 1700685 Page 1 of 16

Vista Work Order No. 1700685 Case Narrative

Sample Condition on Receipt:

One groundwater sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

This sample was extracted and analyzed for 2,3,7,8-TCDD by EPA Method 1613 using a ZB-5MS GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 1700685 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 1700685 Page 3 of 16

Sample Inventory Report

Vista Client
Sample ID Sample ID Sampled Received Components/Containers

1700685-01 Old Fire Station Test Well 31-May-17 12:30 02-Jun-17 10:36 Amber Glass NM Bottle, 1L

Vista Project: 1700685 Client Project: SP 1706534 - (2-14885)

Work Order 1700685 Page 4 of 16

ANALYTICAL RESULTS

Work Order 1700685 Page 5 of 16

Sample ID:	Sample ID: Method Blank						EPA Met	EPA Method 1613B
Matrix: Sample Size:	Aqueous 1.00 L	QC Batch: Date Extracted:	B7F0062 15-Jun-2017 7:48		Lab Sample: B7F0062-BLK1 Date Analyzed: 23-Jun-17 04:19 Column: ZB-5MS	t1 19 Column: ZB-5M	S	
Analyte	Conc. (pg/L)	DF	EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
2,3,7,8-TCDD	ND	0.792			IS 13C-2,3,7,8-TCDD	95.1	31 - 137	
					CRS 37CI-2,3,7,8-TCDD	103	42 - 164	
DL - Sample	DL - Sample specifc estimated detection limit				LCL-UCL- Lower control limit - upper control limit	limit		

DL - Sample specife estimated detection limit EMPC - Estimated maximum possible concentration

S	
rder 1700685	
Work O	

Sample ID: OPR	OPR								EPA Method 1613B
Matrix: Sample Size:	Aqueous 1.00 L		QC Batch: Date Extracted:	B7F0062 15-Jun-2017 7:48	7:48		Lab Sample: B7F0062-BS1 Date Analyzed: 23-Jun-17 01:59 Column: ZB-5MS	Column: ZB-5MS	
Analyte		Amt Found (pg/L)	.) Spike Amt	Ш	%R Limits		Labeled Standard	%R	TCL-UCL
2,3,7,8-TCDD		179	200	7.68	89.7 73 - 146	SI	13C-2,3,7,8-TCDD	8.66	25 - 141
						CRS	CRS 37CI-2,3,7,8-TCDD	107	37 - 158
						1011 101			

LCL-UCL - Lower control limit - upper control limit

Sample ID: Ol	Sample ID: Old Fire Station Test Well						EPA Method 1613B	od 1613B
Client Data		Sample Data		Laboratory Data				
Name:	FGL Environmental, Inc.	Matrix: Groundwater		Lab Sample:	1700685-01	Date Received: 02-Jun-2017 10:36	02-Jun-2017 10	:36
Project:	SP 1706534 - (2-14885)	Sample Size: 0.996 L		QC Batch:	B7F0062	Date Extracted: 15-Jun-2017 7:48	15-Jun-2017 7:	48
Date Collected:	31-May-2017 12:30			Date Analyzed:	23-Jun-17 06:38	23-Jun-17 06:38 Column: ZB-5MS		
Analyte	Conc. (pg/L)	OL EMPC	Qualifiers	Labeled Standard	lard	%R	LCL-UCL Qualifiers	Qualifiers
2,3,7,8-TCDD	ND I	.45		IS 13C-2,3,7,8-TCDD	CDD	92.5	31 - 137	
				CRS 37CI-2,3,7,8-TCDD	CDD	101	42 - 164	
DL - Sample spe	DL - Sample specifc estimated detection limit			LCL-UCL- Lower control limit - upper control limit	nit - upper control limit			

DL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700685 Page 9 of 16

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700685 Page 10 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700685 Page 11 of 16

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700685 Page 12 of 16

Vista Analytical Laboratory 700685 -0.5°C	Method of Sampling: Composite(C) Grab(G) Type of Sample **SEE REVERSE SIDE** Potable(P) Non-Potable(NP) Ag Water(AgW) Bacti Type: Other(O) System(SYS) Source(SR) Waste(W) Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Subcontracted - Dioxin, 2,3,7,8 - TCDD by BPA 1613 1000m1(AGT) Magnetic Agentic	G GW		Relinquished Date: Time: Relinquished Date: Time: Relinquished Date: Time: Time:	Date:
Vista	Bacti Type: Other(O) System(SYS) Source(SR) Waste(W) Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL)				6
		+ +		Relinguishe	Received By
	Time	1			17
	Time:				
	Client: Fruit Growers Laboratory, Inc. Address: FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 93060-3005 Phone: Fax: Contact Person: Project Name: SP 1706534 - (2-14885) Purchase Order Number: Sampler(s) Rick Hoffman Compositor Setup Date:// Ti Lab Number: Samp Num Location Description Samp	1 Old Fire Station Test Well		Remarks:	

Sample Log-in Checklist

Vista Work Orde	r#:	17001	085			т	AT	21
Samples	Date/Tin			Initials:		Locati	on:	WR-2
Arrival:	6/2/1	7 11	036	SR		Shelf/	Rack:_	N/A
	Date/Tin	ne		Initials:		Locati	on:	WR-2
Logged In:	06/03	17 01	314.	MAN		Shelf/l	Rack:_	82
Delivered By:	FedEx	UPS	On Tra	c GSO	DH	L D	Hand elivered	Other
Preservation:	(Ic	ce	BIL	ie lee		Dry I	се	None
Temp °C: 0,2	(uncor		Γime:	-1041		Th		ID. DT 0
Temp °C: - 0.5	(corre	ected)	Probe use	ed: Yes⊠(l	No□	inerm	omete	r ID : DT-3

				YES	NO	NA
Adequate Sample Volume	Received?	1	-Liter each	- /		
Holding Time Acceptable?				/		
Shipping Container(s) Intac	t?			/		
Shipping Custody Seals Int	act?					/
Shipping Documentation Pr	esent?			/		
Airbill Trk	# 53634	4701		V		
Sample Container Intact?						
Sample Custody Seals Inta	ct?					\checkmark
Chain of Custody / Sample	Documentation Pr	esent?		/		/
COC Anomaly/Sample Acc	eptance Form com	pleted?			\vee	\checkmark
If Chlorinated or Drinking W	ater Samples, Acc	ceptable Pres	ervation?			V
Preservation Documented:	Na ₂ S ₂ O ₃	Trizma	None	Yes (No)NA
Shipping Container	Vista	Client	Retain	Return	Disp	ose

Comments:

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

Work Order 1700685

17 @ 68 5 1.9 C											Map Ref
	:: Fruit Growers Laboratory, Inc. :ss: FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 93060-3005 :: :t Name: SP 1706534 - (2-14885) ase Order Number: ler(s) Rick Hoffman ositor Setup Date:/ Time: Location Description		Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL)	Subcontracted - Dioxin, 2,3,7,8 - TCDD by EPA 1613				7	8	90.	
What 6/14/17 1043	tra Volume	duished		Date:	Time:	ished by the state of the state	The same of the sa	Time:	Relinquished Received By:	Date:	

Sample Log-in Checklist

Vista Work Orde	r#:17	00 68	5	<i>i</i>		TA	T 51	d	_
Samples	Date/Time			Initials:		Location	n: WR-	2	
Arrival:	6/14/17	1040		WB		01 15/2	ack: 10/2		
	, ,								
Logged In:	Date/Time	110	·f	Initials:		Location	n: WR-	0	
	06/14/17	110	4	BUB		Shelf/Ra	ack: <u>B2</u>		
Delivered By:	FedEx	UPS	On Tra	ic GSO	DHL	1000000	and ivered	Oth	ner
Preservation:	Ice)	Blu	ue Ice		Dry Ice		No	ne
Temp °C: 1.7	(uncorrec	ted) Ti	me: 104	2				ID.	
Temp °C: 10	(correcte	ed) P	robe use	ed: Yes□ l	Nob	Inermo	meter ID:	IK-1	
	mmmmm			mmmmm			W 1/50	NO	NIA
Adequate Sample	o Volumo Bo	noivod?		Liter			YES	NO	NA
Adequate Sample		ceived :		HJU			V	+	
Holding Time Acc					-				
Shipping Contain Shipping Custody					×1.32		_ V		1
Shipping Castod							1		
Airbill			5398			W - 1880	1	1	
Sample Containe		0.001(0010				1		
Sample Custody		?							V
Chain of Custody			tation Pr	esent?			1		
COC Anomaly/Sa								V	v
If Chlorinated or Preservation Doo				*				No	8110
			S ₂ O ₃	Trizma		None	Yes	No	NA
Shipping Contain	er		′ista	Client	<u> </u>	etain	Return	Disp	ose
Comments:	Ba	cku	p V	olume	_			У.	

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

June 15, 2017

Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Subject: Subcontract Analysis for FGL Lab No. SP 1706534

Enclosed please find results for the following sample(s) which were received by FGL.

• Subcontracted - Asbestos

Please note that this analysis was performed by LA Testing

Thank you for using FGL Environmental.

Sincerely,

Cindy Aguirre Digitally signed by Cindy Aguirre Title: Customer Service Rep Date: 2017-06-15

Enclosure

LA Testing

520 Mission Street South Pasadena, CA 91030 Phone/Fax: (323) 254-9960 / (323) 254-9982 http://www.LATesting.com / pasadenalab@latesting.com

LA Testing Order ID: 321713078 Customer ID: FGLE25

Customer PO: Project ID:

Attn: Cindy Aguirre

FGL Environmental

853 Corporation St Santa Paula, CA 93060 Phone:

(805) 392-2024

Fax:

Collected: Received: 05/31/2017 06/01/2017

Analyzed:

06/14/2017

Proj: SP 1706534 - (2-14885)

Test Report: Determination of Asbestos Structures >10µm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

ASBESTOS

						Α.	BESTOS		
Sample ID Client / EMSL	Sample Filtration Date/Time	Original Sample Vol. Filtered	Effective Filter Area	Area Analyzed	Asbestos Types	Fibers Detected	Analytical Sensitivity	Concentration	Confidence Limits
		(ml)	(mm²)	(mm²)			MFL	(million fibers per	liter)
1 321713078-0001	6/1/2017 02:10 PM	30	1288	0.2227	None Detected	ND	0.19	<0.19	0.00 - 0.71

Analyst(s)
Sherrie Ahmad

nau (1)

Jerry Drapala Ph.D, Laboratory Manager or Other Approved Signatory

Initial report from: 06/15/2017 10:29:32

Any questions please contact Jerry Drapala.

Sample collection and containers provided by the client, acceptable bottle blank level is defined as ≤0.01MFL>10um. ND=None Detected. This report relates only to those items tested. This report may not be reproduced, except in full, without written permission by LA Testing. Samples received in good condition unless otherwise noted.

Samples analyzed by LA Testing South Pasadena, CA CA ELAP 2283

EGIL AGRICULTURAL Analytical Chemists ENVIRONMENTAL

CHAIN OF CUSTODY

www.fglinc.com Laboratory Copy (1 of 3)

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 Phone: (559) 734-9473 Fax: (559) 734-8435 Time: Time: (AOV)Im04 2 **EPA 505** Date: (9)zo01 ***Fill Half Full, Agitate, Then Place on Ice*** See Reverse side for Container, Preservative and Sampling information Wet Chemistry-Perchlorate 1220 Field - pH Time Received By: Relinquished こと 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 Phone: (805) 783-2940 Field - pH Date Office & Laboratory 75 Field Test-Field pH 15 MINUTE HOLD TIME!! 1600 Time: Time: ó -000 A (TĐA)lm 002 4 Wet Chemistry-Color, Odor, Turbidity Date: Wetals, Total-AI,5b,As,Ba,Be,Cd,Cr,Pb,Hg,Ni,Se,Ag,Tr,V 250ml(P)-HNO3 7 Mand (9)5001 General Mineral Chico, CA 95926 Phone: (530) 343-5818 Fax: (530) 343-3807 40ml(VOA) 4 Relinquished Office & Laboratory TEST DESCRIPTION IOH-(TƏA)Im0001 ****Only Run Travel Blank if Needed*** 563 E. Lindo 7417 Mon: 1 1/13/5 Time: Time: Sub Organic-EPA 525 40Ш(ЛОЧ)-НСІ ЕЬЧ 234.2 Date: (AOV)Im04 EPA 504.1-DBCP, EDB Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Other(O) Special(SPL) Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 Phone: (209) 942-0182 Fax: (209) 942-0423 4523:05/25/2017 Bacti Type: Other(O) System(SYS) Source(SR) Waste(W) 44772 Water(AgA) Ag Water(AgW) Potable(P) Relinquished Received By LBW Ø₩ Type of Sample ** SEE KEVERSE SIDE** Ö Method of Sampling: Composite(C) Grab(G) 1233 PL **LH4885** Sampled 853 Corporation Street Santa Paula, CA 93060 Phone: (805) 392-2000 Env Fax: (805) 525-4172 / Ag Fax: (805) 392-2063 5|31|13| Date Sampled Old Fire Station Test Well Time: 1149 Palomino Rd. Savas Barbura, CA 93105 Pickup Fee: PLICK HOPFMAN Fax: Sorporate Offices & Laboratory Vandenberg Village CSD SP 20170523-02 Address: 3757 Constellation Road Lompoc, CA 93436 Location Description Old Fire Station Test Well Contact Person: Joe Barget Remarks: Multiple Chains (805)733-2475 Purchase Order Number: Compositor Setup Date: SP Travel Blank Quote Number: Project Name: Sampling Fee: Lab Number: Sampler(s) Phone: Clicher Samp

Fax: (805) 783-2912

FGIL AGRICULTURAL Analytical Chemists ENVIRONMENTAL

Special

CHAIN OF CUSTODY www.fglinc.com Laboratory Copy (1 of 3)

4523;05/25/2017 TEST DESCRIPTION - See Reverse side for Container, Preservative and Sampling information	A Method of Sampling: Composite(C) Grab(G) A Method of Sampling: Composite(C) Grab(G) Bacti Type: Other(O) System(SYS) Source(SR) Waste(W) Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Bacti Reason: Routine(ROUT) Repeat(RPT) Bacti Reason: Routine(ROUT) Bacti Reason: R	Relinquished Date: Time: Relinquished Date: Time: Relinquished Date: Time: Tim	Date: Time: Received By:	Received By Date: Time: Received By: Date: Time: Date: D
100	1 10 1	Remarks: Multiple Chains		Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 Phone: (805) 392-2006 Proper: (805) 392-2063 Env ear: (805) 392-2063

Subcontract to Vista Analytical Laboratory

9.0	Map Ke	Time:
F	-	
		Date:
		Relinquished Received By:
9		Reling
		Time:
		Date:
		Relinquished Received By:
		Time: F
	(TəA)Im0001	Date:
	Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Other(O) Special(SPL) Subcontracted - Dioxin, 2,3,7,8 - TCDD by EPA 1613	ă ă
ŧ	Bacti Type: Other(O) System(SYS) Source(SR) Waste(W)	
	Potable(P) Non-Potable(NP) Ag Water(AgW)	shed 1 By:
	Type of Sample **SEE REVERSE SIDE**	G GW Relinquished
	Method of Sampling: Composite(C) Grab(G)	Rec Red
	7 Time:	05/31/17
	ss: Fruit Growers Laboratory, Inc. 853 Corporation St. 853 Corporation St. Santa Paula, CA 93060-3005 : Fax: ct Person: tt Name: SP 1706534 - (2-144) ase Order Number: er(s) Rick Hoffman ositor Setup Date:// Lumber: Location Description	1 Old Fire Station Test Well Remarks:
	Client: Address Address Phone: Contact Project Purchas Sample: Compo	

Subcontract to Eurofins Eaton Analytical, Inc.

٦		\Box	П				П				r –
Mon Bod										Time:	Time:
		l								Date:	Date:
										Relinquished	Received By:
										Time: R	Time: R
					8					Date:	Date:
										Δ	Δ
										ihed	By:
		_								Relinquished	Received By:
		_		,						Time:	Time:
	Sub Organic-EPA 525 1000ml(AGT)-HCI 1000ml(AGT)-HCI	1	1							Date:	Date:
	Bacti Type: Other(O) System(SYS) Source(SR) Waste(W) Bacti Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Other(O) Special(SPL)										
	Potable(P) Non-Potable(NP) Ag Water(AgW)	_	\vdash			_					
	Type of Sample **SEE REVERSE SIDE**	-	ВW							Relinquished	Received By:
L	Method of Sampling: Composite(C) Grab(G)	ŋ	ß						lacksquare	Rel	Re
	Time Sampled	00:00	12:30								
	R85) Time: Date Sampled	05/31/17	05/31/17								
	Fruit Growers Laboratory, Inc. STAL Environmental, Inc. 853 Corporation St. Santa Paula, CA 93060-3005 Fax: Person: Name: SP 1706534 - (2-148) se Order Number: r(s) Rick Hoffman umber: Location Description	Travel Blank	Old Fire Station Test Well							rks:	
	Address: FG Address: FG Ss	0	1							Remarks:	101

Subcontract to LA Testing

দ		7	1 1	- 1 -	Т				,
Map Ref								Time:	Time:
								Date:	Date:
		+	+	at .	Н			-	
								Relinquished	Received By:
								Relin	Recei
								Time:	Time:
		\dashv		-			-	_	
								Date:	Date:
		П							
		+						-	
								uished	ed By:
								Relinquished	Received By:
		+			H			Time:	Тіте:
									1
	ubcontracted - Asbestos-Drinking Water (P)	1						Date:	Date:
	sacii Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Ther(O) Special(SPL)								
	sacti Type: Other(O) System(SYS) Source(SR) Waste(W)	\neg							
	(WgA) Non-Potable(MP) Ag Water(AgW)	-		_	\square	+	\vdash	를	By:
ě	Abe of Sample **SEE REVERSE SIDE**	+-+		\perp				Relinquished	Received By:
	Nethod of Sampling: Composite(C) Grab(G)	+					\vdash	Rel	<u>%</u>
	/Time	12:30							
	ite me:	T							
3	99 <i>0</i>	050			\square		\vdash		
	Fruit Growers Laboratory, Inc. 853 Corporation St. Santa Paula, CA 93060-3005 Fax: Ferson: ame: SP 1706534 - (2-14885) Order Number: s) Rick Hoffman tor Setup Date:/ Tip Ther: Location Description Samm	ion Test Well							
	SS: FGL Er 853 Coi Santa P. Sa	Old Fire Station Test Well						ks:	
	Client: Address: Phone: Contact P Project N Purchase Sampler(:							Remarks:	ľ

FGL Environmental

Revision Date: 10/09/14

Doc ID: 2D0900157_SOP_17.DOC

Page: 1 of 1

Condition Upon Receipt (Attach to COC)

S	ample Receipt at SP:	
1.	. Number of ice chests/packages received: 1	
2.	Shipper tracking numbers ————————————————————————————————————	
3.	. Were samples received in a chilled condition? Temps:	
4.	. Surface water (SWTR) bact samples: A sample that has a temperature upon receipt of >10C, whether iced or no should be flagged unless the time since sample collection has been less than two hours.	ot,
5.	. Do the number of bottles received agree with the Yes No N/A COC?	
6.	. Verify sample date, time, sampler Yes No N/A	
7.	. Were the samples received intact? (i.e. no broken Yes No bottles, leaks, etc.)	
8.	. Were sample custody seals intact? Yes No N/A	
S	ample Verification, Labeling and Distribution:	
1.	. Were all requested analyses understood and acceptable?	
2.	. Did bottle labels correspond with the client's ID's? Yes No	
3.	. Were all bottles requiring sample preservation Yes No N/A FGL properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	
4.	. VOAs checked for Headspace? Yes No N/A	
5.	. Were all analyses within holding times at time of Yes No receipt?	
6.	. Have rush or project due dates been checked and Yes No N/A accepted?	
ln	nclude a copy of the COC for lab delivery. (Bacti. Inorganics and Radio)	
S	Sample Receipt, Login and Verification completed by: Reviewed and Approved By Inez Covarrubias Digitally signed by lnez Covarrubias Approved By Digitally signed by lnez Covarrubias Title: Sample Receiving Date: 06/01/2017-09:27:20	
	discrepency Documentation:	
	ny items above which are "No" or do not meet specifications (i.e. temps) must be resolved.	
1.	. Person Contacted: Phone Number:	
	Initiated By: Date:	
	Problem:	
	Resolution:	
2.	. Person Contacted: Phone Number:	
	Initiated By: Date:	
	Problem:	
	Resolution: (2014885)	

Vandenberg Village CSD SP 1706534

INDIVIDUAL ZONE TESTING SUMMARY

July 13, 2017

VANDENBERG VILLAGE CSD

Fire Station #51 Test Well - Zone Testing Summary - July 13,2017 Analysis

			Control of the Contro						
	Chacific	TDS (total						Omoralio	Total
	Conductance	dissolved solids)	Iron	Manganese		Arsenic Bromoform Chloroform	Chloroform	chloromethane	chloromethane Trihalomethanes
MCL (maximum contaminant levels)	1600 umhos/cm	1000 mg/L	300 ng/L	50 ug/L	10 ug/L	100 ug/L	100 ng/L	100 ug/L	100 ug/L
ZONE INTERVAL									
Whole Screened Section: 450' - 810'	0.00	023	000	710	oc C	1.1	0.0	90	J C
(May 31, 2017 sample)	000	0/0	000	001	07	1.1	0.0	0.0	C.2
ZONE 1: 466,5' - 470'	000	000	OLL	710	23				
(July 13, 2017 sample)	900	430	//0	061	21				
ZONE 2: 551.5' - 554'					21	QN	ND	QN	ND
ZONE 3: 634,5' - 638'	810	470	1300	170	24				
ZONE 4: 676.5' - 680'					18	QN	ND	QN	ND
ZONE 5: 739.5' - 743'	800	420	4400	140	32				
ZONE 6: 781.5' - 785'					4.3	QN	ND	QN	ND
ND = non detect									

Celebrating 50 Years of Analytical Service 1967-2017

Zone 6		17G1382-	01 (Water)		Sample Da	te: 07/13/17	11:21 Sa	mpler: Je	ff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>									
Arsenic (As)	SM3113-B	4.3	4.0	10	ug/L	07/31/17	08/02/17	1731018	
Trihalomethanes Analyses									
Bromodichloromethane	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Bromoform	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Chloroform (Trichloromethane)	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Dibromochloromethane	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Total Trihalomethanes (TTHM)	EPA 524.2	ND	1.0	80	ug/L	07/20/17	07/20/17	1729143	
Surrogate: Bromofluorobenzene	EPA 524.2	85 %				07/20/17	07/20/17	1729143	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	84 %				07/20/17	07/20/17	1729143	
Haloacetic Acids Analyses									
Dibromoacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Dichloroacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Monobromoacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Monochloroacetic Acid	EPA 552.2	ND	2.0		ug/L	07/24/17	07/25/17	1730003	
Trichloroacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Total Haloacetic Acids (HAA5)	EPA 552.2	ND	1.0	60	ug/L	07/24/17	07/25/17	1730003	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	93 %			tors!	07/24/17	07/25/17	1730003	

Celebrating 50 Years of Analytical Service 1967-2017

Zone 5		17G1382-	02 (Water)		Sample Dat	te: 07/13/17	12:05 Sa	mpler: Je	ff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
General Chemical Analyses									
Alkalinity, Total (as CaCO3)	SM 2320 B	86	5.0		mg/L	07/26/17	07/26/17	1729014	
Bicarbonate (HCO3)	SM 2320 B	110	5.0		mg/L	07/26/17	07/26/17	1729014	
Carbonate (CO3)	SM 2320B	ND	5.0		mg/L	07/26/17	07/26/17	1729014	
Chloride (Cl)	EPA 300 0	110	1.0	500	mg/L	07/14/17	07/16/17	1728198	
Cyanide (CN)	SM4500CNF	ND	100	150	ug/L	07/20/17	07/20/17	1729134	
Specific Conductance (E.C.)	SM 2510B	800	2.0	1600	umhos/cm	07/26/17	07/26/17	1729014	
Fluoride (F)	EPA 300.0	0.18	0.10	2	mg/L	07/14/17	07/16/17	1728198	
Hydroxide (OH)	SM 2320B	ND	5.0		mg/L	07/26/17	07/26/17	1729014	
MBAS (LAS Mole. Wt 340.0)	SM 5540C	ND	0.10	0.5	mg/L	07/18/17	07/19/17	1729075	HT-06
Nitrate as N (NO3-N)	EPA 300.0	0.59	0.40	10	mg/L	07/16/17	07/16/17	1728198	HT-06
Nitrate + Nitrite (as N)	EPA 300.0	0.59	0.40	10	mg/L	07/16/17	07/16/17	1728198	HT-06
Nitrite as N (NO2-N)	EPA 300.0	ND	0.40	1	mg/L	07/16/17	07/16/17	1728198	HT-06
Perchlorate (ClO4)	EPA 314.0	ND	4.0	6	ug/L	07/26/17	07/26/17	1730128	
pH (Lab)	SM 4500HB	6.8			pH Units	07/17/17	07/17/17	1729014	
Sulfate (SO4)	EPA 300.0	110	0.50	500	mg/L	07/14/17	07/16/17	1728198	
Total Filterable Residue/TDS	SM 2540C	420	5.0	1000	mg/L	07/20/17	07/21/17	1729136	
Metals									
Aluminum (Al)	EPA 200.7	530	50	200	ug/L	07/25/17	07/25/17	1730045	
Antimony (Sb)	SM3113-B	ND	6.0	6	ug/L	07/26/17	07/28/17	1730109	
Arsenic (As)	SM3113-B	22	4.0	10	ug/L	07/31/17	08/02/17	1731018	
Barium (Ba)	EPA 200.7	ND	100	1000	ug/L	07/25/17	07/25/17	1730045	
Beryllium (Be)	EPA 200.7	ND	1.0	4	ug/L	07/24/17	07/24/17	1730024	
Boron (B)	EPA 200.7	140	100		ug/L	07/25/17	07/25/17	1730045	
Cadmium (Cd)	EPA 200.7	ND	1.0	5	ug/L	07/24/17	07/24/17	1730024	
Calcium (Ca)	EPA 200.7	59	1.0		mg/L	07/25/17	07/26/17	1730072	
Chromium (+6)	EPA 218.6	ND	1.0	10	ug/L	07/13/17	07/17/17	1728168	
Chromium (Total Cr)	EPA 200.7	ND	10	50	ug/L	07/24/17	07/24/17	1730024	
Copper (Cu)	EPA 200.7	ND	50	1000	ug/L	07/25/17	07/25/17	1730045	
Iron (Fe)	EPA 200.7	4400	100	300	ug/L	07/25/17	07/25/17	1730045	
Lead (Pb)	SM3113-B	ND	5.0	500	ug/L	07/31/17	07/31/17	1731019	
Magnesium (Mg)	EPA 200.7	17	1.0		mg/L	07/25/17	07/26/17	1730072	
Manganese (Mn)	EPA 200.7	140	20	50	ug/L	07/25/17	07/25/17	1730045	
Mercury (Hg)	EPA 245.1	ND	1.0	2	ug/L	07/20/17	07/24/17	1729138	
Nickel (Ni)	EPA 200.7	ND	10	100	ug/L	07/24/17	07/24/17	1730024	
Potassium (K)	EPA 200.7	3.5	1.0	-00	mg/L	07/25/17	07/26/17	1730072	
Selenium (Se)	SM3113-B	ND	5.0	50	ug/L	08/01/17	08/01/17	1731050	
Silver (Ag)	EPA 200.7	ND	10	100	ug/L ug/L	07/24/17	07/24/17	1730024	
Sodium (Na)	EPA 200.7	79	1.0	100	ug/L mg/L	07/25/17	07/26/17	1730027	
Thallium (Tl)	EPA 200.7	ND		2		07/28/17	07/28/17	1730166	
mamum (11)	EFA 200.9	110	1.0	2	ug/L	07/20/17	07/20/17	1750100	

Zone 5		17G1382-	02 (Water)		Sample Da	te: 07/13/17	12:05 Sa	ampler: J	eff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>									
Vanadium (V)	EPA 200.9	3.6	3.0		ug/L	07/25/17	07/26/17	1730037	
Zinc (Zn)	EPA 200.7	ND	50	5000	ug/L	07/25/17	07/25/17	1730045	
Anion / Cation Balance									
Hardness, Total (as CaCO3)	Calculated	220			mg/L	07/25/17	07/26/17	[CALC]	
Total Anions	Calculated	7.2			meq/L	07/25/17	07/26/17	[CALC]	
Total Cations	Calculated	7.88			meq/L	07/25/17	07/26/17	[CALC]	
% difference	Calculated	8.9				07/25/17	07/26/17	[CALC]	
Zone 4		17G1382-	03 (Water)		Sample Date	te: 07/13/17	12:49 Sa	ampler: J	eff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>									
Arsenic (As)	SM3113-B	18	4.0	10	ug/L	07/31/17	08/02/17	1731018	
Trihalomethanes Analyses									
Bromodichloromethane	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Bromoform	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Chloroform (Trichloromethane)	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Dibromochloromethane	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Total Trihalomethanes (TTHM)	EPA 524.2	ND	1.0	80	ug/L	07/20/17	07/20/17	1729143	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	122 %			-	07/20/17	07/20/17	1729143	
Surrogate: Bromofluorobenzene	EPA 524.2	81 %				07/20/17	07/20/17	1729143	
Haloacetic Acids Analyses									
Dibromoacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Dichloroacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Monobromoacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Monochloroacetic Acid	EPA 552.2	ND	2.0		ug/L	07/24/17	07/25/17	1730003	
Trichloroacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Total Haloacetic Acids (HAA5)	EPA 552.2	ND	1.0	60	ug/L	07/24/17	07/25/17	1730003	

Celebrating 50 Years of Analytical Service 1967-2017

Zone 3		17G1382-	-04 (Water)		Sample Dat	te: 07/13/17	13:35 Sa	mpler: Je	ff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
General Chemical Analyses									
Alkalinity, Total (as CaCO3)	SM 2320 B	79	5.0		mg/L	07/26/17	07/26/17	1729014	
Bicarbonate (HCO3)	SM 2320 B	97	5.0		mg/L	07/26/17	07/26/17	1729014	
Carbonate (CO3)	SM 2320B	ND	5.0		mg/L	07/26/17	07/26/17	1729014	
Chloride (Cl)	EPA 300 0	110	1.0	500	mg/L	07/14/17	07/16/17	1728198	
Cyanide (CN)	SM4500CNF	ND	100	150	ug/L	07/20/17	07/20/17	1729134	
Specific Conductance (E.C.)	SM 2510B	810	2.0	1600	umhos/cm	07/26/17	07/26/17	1729014	
Fluoride (F)	EPA 300.0	0.18	0.10	2	mg/L	07/14/17	07/16/17	1728198	
Hydroxide (OH)	SM 2320B	ND	5.0		mg/L	07/26/17	07/26/17	1729014	
MBAS (LAS Mole. Wt 340.0)	SM 5540C	ND	0.10	0.5	mg/L	07/18/17	07/19/17	1729075	HT-06
Nitrate as N (NO3-N)	EPA 300.0	0.46	0.40	10	mg/L	07/16/17	07/16/17	1728198	HT-06
Nitrate + Nitrite (as N)	EPA 300.0	0.46	0.40	10	mg/L	07/16/17	07/16/17	1728198	HT-06
Nitrite as N (NO2-N)	EPA 300.0	ND	0.40	1	mg/L	07/16/17	07/16/17	1728198	HT-06
Perchlorate (ClO4)	EPA 314.0	ND	4.0	6	ug/L	07/26/17	07/26/17	1730128	
pH (Lab)	SM 4500HB	6.7			pH Units	07/17/17	07/17/17	1729014	
Sulfate (SO4)	EPA 300.0	130	0.50	500	mg/L	07/14/17	07/16/17	1728198	
Total Filterable Residue/TDS	SM 2540C	470	5.0	1000	mg/L	07/20/17	07/21/17	1729136	
Metals									
Aluminum (Al)	EPA 200.7	190	50	200	ug/L	07/25/17	07/25/17	1730045	
Antimony (Sb)	SM3113-B	ND	6.0	6	ug/L	07/26/17	07/28/17	1730109	
Arsenic (As)	SM3113-B	24	4.0	10	ug/L	07/31/17	08/02/17	1731018	
Barium (Ba)	EPA 200.7	ND	100	1000	ug/L	07/25/17	07/25/17	1730045	
Beryllium (Be)	EPA 200.7	ND	1.0	4	ug/L	07/24/17	07/24/17	1730024	
Boron (B)	EPA 200.7	160	100		ug/L	07/25/17	07/25/17	1730045	
Cadmium (Cd)	EPA 200.7	ND	1.0	5	ug/L	07/24/17	07/24/17	1730024	
Calcium (Ca)	EPA 200.7	60	1.0		mg/L	07/25/17	07/26/17	1730072	
Chromium (+6)	EPA 218.6	ND	1.0	10	ug/L	07/13/17	07/17/17	1728168	
Chromium (Total Cr)	EPA 200.7	ND	10	50	ug/L	07/24/17	07/24/17	1730024	
Copper (Cu)	EPA 200.7	ND	50	1000	ug/L	07/25/17	07/25/17	1730045	
Iron (Fe)	EPA 200.7	1300	100	300	ug/L ug/L	07/25/17	07/25/17	1730045	
Lead (Pb)	SM3113-B	ND	5.0	300		07/31/17	07/31/17	1731019	
	EPA 200.7	17			ug/L mg/L	07/25/17	07/26/17	1730072	
Magnesium (Mg) Manganese (Mn)	EPA 200.7 EPA 200.7	170	1.0 20	50	ug/L	07/25/17	07/25/17	1730072	
Mercury (Hg)	EPA 245.1	ND	1.0	2		07/20/17	07/24/17	1729138	
Nickel (Ni)	EPA 200.7	ND	1.0	100	ug/L	07/24/17	07/24/17	1730024	
	EPA 200.7			100	ug/L	07/25/17	07/24/17	1730024	
Potassium (K)		3.5 ND	1.0	50	mg/L				
Selenium (Se)	SM3113-B	ND	5.0	50	ug/L	08/01/17	08/01/17	1731050	
Silver (Ag)	EPA 200.7	ND	10	100	ug/L	07/24/17	07/24/17	1730024	
Sodium (Na)	EPA 200.7	80	1.0	200	mg/L	07/25/17	07/26/17	1730072	
Thallium (Tl)	EPA 200.9	ND	1.0	2	ug/L	07/28/17	07/28/17	1730166	

Zone 3		17G1382-	04 (Water)		Sample Da	te: 07/13/17	13:35 Sa	mpler: Je	eff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>									
Vanadium (V)	EPA 200.9	ND	3.0		ug/L	07/25/17	07/26/17	1730037	
Zinc (Zn)	EPA 200.7	ND	50	5000	ug/L	07/25/17	07/25/17	1730045	
Anion / Cation Balance									
Hardness, Total (as CaCO3)	Calculated	220			mg/L	07/25/17	07/26/17	[CALC]	
Total Anions	Calculated	7.41			meq/L	07/25/17	07/26/17	[CALC]	
Total Cations	Calculated	7.97			meq/L	07/25/17	07/26/17	[CALC]	
% difference	Calculated	7.3				07/25/17	07/26/17	[CALC]	
Zone 2		17G1382-	05 (Water)		Sample Da	te: 07/13/17	14:23 Sa	mpler: Je	eff Cole
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Metals									
Arsenic (As)	SM3113-B	21	4.0	10	ug/L	07/31/17	08/02/17	1731018	
<u> Frihalomethanes Analyses</u>									
Bromodichloromethane	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Bromoform	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Chloroform (Trichloromethane)	EPA 524 2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Dibromochloromethane	EPA 524.2	ND	1.0		ug/L	07/20/17	07/20/17	1729143	
Total Trihalomethanes (TTHM)	EPA 524.2	ND	1.0	80	ug/L	07/20/17	07/20/17	1729143	
Surrogate: Bromofluorobenzene	EPA 524.2	75 %			-	07/20/17	07/20/17	1729143	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	80 %				07/20/17	07/20/17	1729143	
Haloacetic Acids Analyses									
Dibromoacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Dichloroacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Monobromoacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Monochloroacetic Acid	EPA 552.2	ND	2.0		ug/L	07/24/17	07/25/17	1730003	
Trichloroacetic Acid	EPA 552.2	ND	1.0		ug/L	07/24/17	07/25/17	1730003	
Total Haloacetic Acids (HAA5)	EPA 552.2	ND	1.0	60	ug/L	07/24/17	07/25/17	1730003	

Celebrating 50 Years of Analytical Service 1967-2017

Repulsion	Zone 1		17G1382-06 (Water)			Sample Dat	te: 07/13/17	15:16 Sa	mpler: Je	ff Cole
Milanily, Total (as CaCO3)	Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Bicarbonate (IICO3)	General Chemical Analyses									
Carbonate (CO3)	Alkalinity, Total (as CaCO3)	SM 2320 B	77	5.0		mg/L	07/26/17	07/26/17	1729014	
Chloride (Cf)	Bicarbonate (HCO3)	SM 2320 B	94	5.0		mg/L	07/26/17	07/26/17	1729014	
Cyanide (CN) SM4500CNF ND 100 150 ugit. 07.2017 07.2017 172914 Periodic Conductance (E.C.) SM 2510B 80 2.0 umbow 07.2617 07.2617 1729014 Periodic (CN) EBA 3000 0.18 0.10 2 mg. 07.6717 07.2617 1729014 Periodic (CN) Periodic (CN) SM 2320B ND 5.0 mg. 07.6217 07.2617 1729014 Periodic (CN) Periodic (CN) MBAS (LAS Mole W1340.0) SM 5540C ND 0.10 0.30 mg. 07.617 07.617 1728094 HT-06 Nitric as N (NO2-N) EPA 3000 ND 0.40 10 mg. 07.617 07.617 1728198 HT-06 Nitric as N (NO2-N) EPA 3000 ND 0.40 6 mg. 07.6177 07.6177 1728198 HT-06 Pit (Lab) SM 4500HB 6.7 - mg. 07.6177 07.6177 1729104 PT-06 Pit (Lab) SM 4500HB 6.7 <	Carbonate (CO3)	SM 2320B	ND	5.0		mg/L	07/26/17	07/26/17	1729014	
Professional Conductance (E.C.) SM 2510B 800 2.0 1600 withows 072617 072617 172918 172918 172916 172918 172916 172918 172916 172918 172916 172918 172916 172918	Chloride (Cl)	EPA 300 0	120	1.0	500	mg/L	07/14/17	07/16/17	1728198	
Prioride (F)	Cyanide (CN)	SM4500CNF	ND	100	150	ug/L	07/20/17	07/20/17	1729134	
MASS (LAS Mole W1 340.0) SM 5540C ND 0.10 0.5 mg/L 07/26/17 07/26/17 17290/5 11-06	Specific Conductance (E.C.)	SM 2510B	800	2.0	1600	umhos/cm	07/26/17	07/26/17	1729014	
MBAS (LAS Mole. W1 340,0) MBAS (LAS Mole. W1 34	Fluoride (F)	EPA 300.0	0.18	0.10	2	mg/L	07/14/17	07/16/17	1728198	
Nitrate as N (NO3-N)	Hydroxide (OH)	SM 2320B	ND	5.0		mg/L	07/26/17	07/26/17	1729014	
Nirrite - Nitrite (as N)	MBAS (LAS Mole. Wt 340.0)	SM 5540C	ND	0.10	0.5	mg/L	07/18/17	07/19/17	1729075	HT-06
Nitrite as N (NO2-N)	Nitrate as N (NO3-N)	EPA 300.0	ND	0.40	10	mg/L	07/16/17	07/16/17	1728198	HT-06
Perchlorate (CIO4)	Nitrate + Nitrite (as N)	EPA 300.0	ND	0.40	10	mg/L	07/16/17	07/16/17	1728198	HT-06
PH (Lab)	Nitrite as N (NO2-N)	EPA 300.0	ND	0.40	1	mg/L	07/16/17	07/16/17	1728198	HT-06
PHI (Lab)	Perchlorate (ClO4)	EPA 314.0	ND	4.0	6	ug/L	07/26/17	07/26/17	1730128	
Sulfate (SO4) EPA 300.0 130 0.50 500 mg/L 07/14/17 07/16/17 1728/18 Total Filterable Residue/TDS SM 2540C 430 5.0 1000 mg/L 07/20/17 07/21/17 1728/18 Metals Security Aluminum (Al) EPA 200.7 150 5.0 200 ug/L 07/25/17 07/25/17 1730045 Antimony (Sb) SM3113-B ND 6.0 6 ug/L 07/25/17 07/25/17 1730109 Arsenic (As) SM3113-B ND 6.0 6 ug/L 07/25/17 07/25/17 1730109 Barium (Ba) EPA 200.7 ND 100 100 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/24/17 07/24/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 1 ug/L 07/24/17 07/24/17 1730045 Cadmium (Cd) <th< td=""><td>pH (Lab)</td><td>SM 4500HB</td><td>6.7</td><td></td><td></td><td>-</td><td>07/17/17</td><td>07/17/17</td><td>1729014</td><td></td></th<>	pH (Lab)	SM 4500HB	6.7			-	07/17/17	07/17/17	1729014	
Metals Aluminum (AI) EPA 200.7 150 50 200 ug/L 07/25/17 07/25/17 130045 Antimony (Sb) SM3113-B ND 6.0 6 ug/L 07/25/17 07/25/17 1730045 Arsenic (AS) SM3113-B 31 4.0 10 ug/L 07/25/17 08/02/17 1731018 Barium (Ba) EPA 200.7 ND 100 1000 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/24/17 07/24/17 1730045 Beron (B) EPA 200.7 150 100 ug/L 07/24/17 07/24/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/24/17 07/24/17 1730045 Chromium (Fd) EPA 200.7 ND 1.0 1 ug/L 07/24/17 07/24/17 1730045 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L	- 1 1	EPA 300.0	130	0.50	500	mg/L	07/14/17	07/16/17	1728198	
Aluminum (Al) EPA 200.7 150 50 200 ug/L 07/25/17 07/25/17 1730045 Antimony (Sb) SM3113-B ND 6.0 6 ug/L 07/25/17 07/25/17 1730109 Arsnic (As) SM3113-B 31 4.0 10 ug/L 07/25/17 07/25/17 173018 Barium (Ba) EPA 200.7 ND 100 1000 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/25/17 07/25/17 1730045 Boron (B) EPA 200.7 150 100 ug/L 07/25/17 07/25/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/25/17 07/25/17 1730045 Chromium (Cd) EPA 200.7 ND 1.0 10 ug/L 07/25/17 07/26/17 1730072 Chromium (Folal Cr) EPA 200.7 ND 50 100 ug/L 07/25/17 </td <td>Total Filterable Residue/TDS</td> <td>SM 2540C</td> <td>430</td> <td>5.0</td> <td>1000</td> <td>mg/L</td> <td>07/20/17</td> <td>07/21/17</td> <td>1729136</td> <td></td>	Total Filterable Residue/TDS	SM 2540C	430	5.0	1000	mg/L	07/20/17	07/21/17	1729136	
Aluminum (Al) EPA 200.7 150 50 200 ug/L 07/25/17 07/25/17 1730045 Antimony (Sb) SM3113-B ND 6.0 6 ug/L 07/25/17 07/25/17 1730109 Arsnic (As) SM3113-B 31 4.0 10 ug/L 07/25/17 07/25/17 173018 Barium (Ba) EPA 200.7 ND 100 1000 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/25/17 07/25/17 1730045 Boron (B) EPA 200.7 150 100 ug/L 07/25/17 07/25/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/25/17 07/25/17 1730045 Chromium (Cd) EPA 200.7 ND 1.0 10 ug/L 07/25/17 07/26/17 1730072 Chromium (Folal Cr) EPA 200.7 ND 50 100 ug/L 07/25/17 </td <td>Metals</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Metals									
Antimony (Sb) SM3113-B ND 6.0 6 ug/L 07/26/17 07/28/17 1730109 Arsenic (As) SM3113-B 31 4.0 10 ug/L 07/31/17 08/02/17 1731018 Barium (Ba) EPA 200.7 ND 100 1000 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/24/17 07/24/17 1730045 Born (B) EPA 200.7 150 100 ug/L 07/25/17 07/25/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/24/17 07/24/17 1730024 Chromium (+6) EPA 200.7 ND 1.0 10 ug/L 07/24/17 07/24/17 1730024 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/25/17 </td <td></td> <td>EPA 200.7</td> <td>150</td> <td>50</td> <td>200</td> <td>ug/L</td> <td>07/25/17</td> <td>07/25/17</td> <td>1730045</td> <td></td>		EPA 200.7	150	50	200	ug/L	07/25/17	07/25/17	1730045	
Arsenic (As) SM3113-B 31 4.0 10 ug/L 07/31/17 08/02/17 1731018 Barium (Ba) EPA 200.7 ND 100 1000 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/24/17 07/24/17 1730024 Boron (B) EPA 200.7 ND 1.0 5 ug/L 07/25/17 07/25/17 1730045 Cadrium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/25/17 07/24/17 1730042 Chromium (-6) EPA 200.7 ND 1.0 mg/L 07/25/17 07/24/17 1730072 Chromium (Total Cr) EPA 200.7 ND 10 10 ug/L 07/24/17 07/24/17 1730045 Lead (Pb) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/25/17 <td></td> <td>SM3113-B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>07/28/17</td> <td>1730109</td> <td></td>		SM3113-B						07/28/17	1730109	
Barium (Ba) EPA 200.7 ND 100 1000 ug/L 07/25/17 07/25/17 1730045 Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/24/17 07/24/17 1730024 Boron (B) EPA 200.7 150 100 ug/L 07/25/17 07/25/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/24/17 07/24/17 1730024 Calcium (Ca) EPA 200.7 59 1.0 mg/L 07/25/17 07/26/17 1730072 Chromium (Folal Cr) EPA 218.6 ND 1.0 10 ug/L 07/13/17 07/24/17 1730072 Chromium (Total Cr) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/31/17		SM3113-B					07/31/17	08/02/17	1731018	
Beryllium (Be) EPA 200.7 ND 1.0 4 ug/L 07/24/17 07/24/17 1730024 Boron (B) EPA 200.7 150 100 ug/L 07/25/17 07/25/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/24/17 07/24/17 1730024 Calcium (Ca) EPA 200.7 59 1.0 mg/L 07/25/17 07/26/17 1730072 Chromium (+6) EPA 218.6 ND 1.0 10 ug/L 07/13/17 07/17/17 1730024 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/25/17 07/24/17 1730024 Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/25/17 173		EPA 200.7				_	07/25/17	07/25/17	1730045	
Boron (B) EPA 200.7 150 100 ug/L 07/25/17 07/25/17 1730045 Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/24/17 07/24/17 1730024 Calcium (Ca) EPA 200.7 59 1.0 mg/L 07/25/17 07/26/17 1730072 Chromium (Fold Cr) EPA 218.6 ND 1.0 10 ug/L 07/24/17 07/24/17 1730072 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/24/17 07/24/17 1730024 Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/25/17 1730045 Manganesum (Mg) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17		EPA 200.7	ND			_	07/24/17	07/24/17	1730024	
Cadmium (Cd) EPA 200.7 ND 1.0 5 ug/L 07/24/17 07/24/17 1730024 Calcium (Ca) EPA 200.7 59 1.0 mg/L 07/25/17 07/26/17 1730072 Chromium (He) EPA 218.6 ND 1.0 10 ug/L 07/13/17 07/17/17 1728168 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/24/17 07/24/17 1730024 Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/25/17 1730045 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Marganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 <t< td=""><td></td><td>EPA 200.7</td><td>150</td><td></td><td></td><td>_</td><td>07/25/17</td><td>07/25/17</td><td>1730045</td><td></td></t<>		EPA 200.7	150			_	07/25/17	07/25/17	1730045	
Calcium (Ca) EPA 200.7 59 1.0 mg/L 07/25/17 07/26/17 1730072 Chromium (+6) EPA 218.6 ND 1.0 10 ug/L 07/13/17 07/17/17 1730072 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/24/17 07/24/17 1730024 Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/25/17 1730045 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/24/17 07/24/17 <t< td=""><td></td><td>EPA 200.7</td><td></td><td></td><td>5</td><td>_</td><td></td><td>07/24/17</td><td>1730024</td><td></td></t<>		EPA 200.7			5	_		07/24/17	1730024	
Chromium (+6) EPA 218.6 ND 1.0 10 ug/L 07/13/17 07/17/17 1728168 Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/24/17 07/24/17 1730024 Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/31/17 07/31/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/25/17 07/26/17 1730045 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1		EPA 200.7	59			_	07/25/17	07/26/17	1730072	
Chromium (Total Cr) EPA 200.7 ND 10 50 ug/L 07/24/17 07/24/17 1730024 Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/31/17 07/31/17 1731019 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/25/17 07/24/17 1730045 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 ND 5.0 50 ug/L 07/25/17 07/26		EPA 218.6			10			07/17/17	1728168	
Copper (Cu) EPA 200.7 ND 50 1000 ug/L 07/25/17 07/25/17 1730045 Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/31/17 07/31/17 1731019 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/20/17 07/24/17 1729138 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1730		EPA 200.7	ND			-	07/24/17	07/24/17	1730024	
Iron (Fe) EPA 200.7 770 100 300 ug/L 07/25/17 07/25/17 1730045 Lead (Pb) SM3113-B ND 5.0 ug/L 07/31/17 07/31/17 1731019 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/20/17 07/24/17 1729138 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072						-				
Lead (Pb) SM3113-B ND 5.0 ug/L 07/31/17 07/31/17 1731019 Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/20/17 07/24/17 1729138 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/25/17 07/26/17 1730072 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072 </td <td></td> <td>EPA 200.7</td> <td>770</td> <td></td> <td></td> <td></td> <td>07/25/17</td> <td>07/25/17</td> <td>1730045</td> <td></td>		EPA 200.7	770				07/25/17	07/25/17	1730045	
Magnesium (Mg) EPA 200.7 18 1.0 mg/L 07/25/17 07/26/17 1730072 Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/20/17 07/24/17 1729138 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072					500	-				
Manganese (Mn) EPA 200.7 150 20 50 ug/L 07/25/17 07/25/17 1730045 Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/20/17 07/24/17 1729138 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072						_				
Mercury (Hg) EPA 245.1 ND 1.0 2 ug/L 07/20/17 07/24/17 1729138 Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072					50					
Nickel (Ni) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072										
Potassium (K) EPA 200.7 3.6 1.0 mg/L 07/25/17 07/26/17 1730072 Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072										
Selenium (Se) SM3113-B ND 5.0 50 ug/L 08/01/17 08/01/17 1731050 Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072					-34					
Silver (Ag) EPA 200.7 ND 10 100 ug/L 07/24/17 07/24/17 1730024 Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072	. ,				50					
Sodium (Na) EPA 200.7 79 1.0 mg/L 07/25/17 07/26/17 1730072						_				
					100	-				
I NAHIRUM (11) EPA 200.9 ND 1.0 2 no/T 0//28/17 0//28/17 1/30166	Thallium (Tl)	EPA 200.9	ND	1.0	2	ug/L	07/28/17	07/28/17	1730166	

Celebrating 50 Years of Analytical Service 1967-2017

Vandenberg Village CSDProject:RoutineWork Order:17G13823757 ConstellationSub Project:Test Well Zone TestingReceived:07/16/17 00:00Lompoc CA, 93436Project Manager:Water Quality SupervisorReported:08/03/17

Zone 1		17G1382-06 (Water)			Sample Date: 07/13/17 15:16 Sampler: Jeff Cole				
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>									
Vanadium (V)	EPA 200.9	ND	3.0		ug/L	07/25/17	07/26/17	1730037	
Zinc (Zn)	EPA 200.7	ND	50	5000	ug/L	07/25/17	07/25/17	1730045	
Anion / Cation Balance									
Hardness, Total (as CaCO3)	Calculated	220			mg/L	07/25/17	07/26/17	[CALC]	
Total Anions	Calculated	7.64			meq/L	07/25/17	07/26/17	[CALC]	
Total Cations	Calculated	7.96			meq/L	07/25/17	07/26/17	[CALC]	
% difference	Calculated	4.1				07/25/17	07/26/17	[CALC]	

HT-06 Sample was received and analyzed outside of recommended hold time.

pH (Lab) was analyzed ASAP but received and analyzed past the 15 minute hold time.

ND Analyte NOT DETECTED at or above the reporting limit

Ty release

Gregory Nelson
Project Manager

1791382

Clinical Lab of San Bernardino, Inc.

21881 Barton Road Grand Terrace CA 92313 909 825-7693 / 516-A N 8th St. Lompoc CA 93436 805 737-7300

Chain of Custody

Turn Around Time (TAT)														ti.	0						ပ္စ	
Comments Comments												7/3	Other	TAT: (10) Ten Day (5) Five Day Rush (2) Two Day Rush (Sign) Print Name / Company	0/31 F1/81/1 #8200	CLSPS				Work Order Logged By:	Clinical Lab Receipt Temp.:	Page of
ysis I									1			7/	ge 0 -	n Day	2					Wo	Clin	
CHROME VI		>		7		/	F,	β	<i>L</i> 0	m	0	173	Ses	10) Te								
THM	>		>		>								H S-	TAT: (1 (Sign)								
HALDACETIC ACID	>		<u>`</u>		<u> </u>								Runo	<u> 1</u> 2 By (4	t,					By:		
ARSENIC	>		>		_	_		-					water	-well Received By	126	Ş				Samples / COC Checked By:		
INORGANIC		>		^		^ /							torm	Well lecel	SML		\		[] Other	Che		
GENERAL MINERAL Total Containers	8		2	5 v	5	<u>۶</u>							/R - S	n W-	S	([]	200		
													r SM	butio 	•	Н			SHS	les/		
													' - Water WW - Wastewater	Distri 1e	335	1200			SASU []	Samp		
Destination Laborato Destination Laborato NaOH HCI I Clinical Grand Terrace / ELAP NOOH HCI NOOH NACSCO3 Unpreserved Sample Type Matrix													Wast	Special D-Dis Date / Time	3	11)						
70 Lerra College											_		WW.	specie Jate	3	114			[] OnTrac	[] Custody Seals		
Crand ON NH4CI Na2S2O3													ater	nt 4-9	1512	0.1			0[]	ody		
Unpreserved														emer		2			S.	Cust		
Sample Type Matrix		ļ											ater	leplac ny	9	160			Jups	[]		
												\vdash	ce W	1-Routine 2-Repeat 3-Rep Print Name / Company	VVCSD	17			υ *	tact		
Container ID								ļ	٠				Surfa	Зерея / Со	1	WK			°C rnight	[] Intact		
								₹3 2.	of Hold Time	160.01/	Bac		SW-	e 2-F	JEFFERE	the complet			Ove			
Ros Bos								/Noz	Ho	Jen ,			ater	outin nt Na	9	3			emp. State	elu lo		
ATIONS FAX NO.: 5								3/	040	per			nd W	: 1-F Pri	#	9			ipt T	[] On Blu Ice		
FAX								No3 (Grou	Туре	3	()			Pece J Gol	[]		
VANDENBERG VILLAGE CONSTELLATION RD A 93436 MIKE GRANDER TESTING NELL ZONE TESTING TRE COLE Sample Identification	૭	S	4	n	7	_		No,	Ok	climt.			GW -	mple ()					Lompoc Lab Receipt Temp.: °C [] Fed Ex [] Golden State Overnight	t Ice		
Sample	3		1		JE	¥			U				ater	s / Sa Sign		i			poc d Ex	[] On Wet Ice		
1333 1333 1333 1333 1333 1333 1333 133	ZONE	ZONE	Zorse	Zorse	ZONE	ZONE		Nox	MBA	Dev	-		ing W	mple By (Lom J Fe	10	ts:	
15.7 CA CA CC: MALE 125 7.1 WEST WEST WEST WEST WEST WEST WEST WEST				Н									Drink	ria Sa shed	M						meu	
Address: 3757 Constructory Address: 3757 Constructory Low poc. Ca 92424 Client Contact: Mike Gransk Phone No.: 805 733 2407 F. System No.: Project: Test Were Zone Te Sampled By: JEPE Cole Comments: Date Time Sample Id	1121	507)	1249	135	223	316							Matrix: DW - Drinking Water GW - Ground Water SW - Surface Water M	Use for Bacteria Samples / Sample Type: 1-Routine 2-Repeat 3-Replacement 4-Special D-Distribution W-Well Relirquished By (Sign) Print Name / Company Date / Time Rece	11/		1		(Lab Use Only) Shipped Via:	on:	Receipt Comments:	
Address: 3- Low Poc Client Conta Phone No.: System No.: Project: 7€ Sampled By Comments:	1-61-2	-13-17	71-81-1	1-6-2	7-13-17	7-13-17							trix:	e for Relli	1			,	th Us	Condition:	ceip	
	7	1-1	IZ	7	7	I						1	Ma	Us	7	/			Sh	ပ္ပ	Re	

Client: Vandenberg Village

3757 Constellation Rd.

Lompoc, CA 93436

Contact: Mike Garner

Phone: (805) 733-2475

Email: Vandenberg Village Group

System No. 4210017

Project: General Physical

Sampler: Jeff Cole

Date Sampled: July 13, 2017

Date/Time Setup: July 13, 2017 @ 16:50 Date/Time Read: July 13, 2017 @ 16:50

Date Reported: July 13, 2017

Results

Laboratory ID	Sample Time	Sample Location	Field pH	Field Temp (C)	Color SM 2120B (CU)	Odor EPA 140.1 (TON)	Turbidity EPA 180.1 (NTU)
7 - 1		Test Well Zone 5	6.39	68	15	1	9.28
		Test Well Zone 3	6.36	68	10	2	5.50
		Test Well Zone 1	6.29	69	5	2	3.95

Sample Types

1 = routine

2 = repeat

3 = replacement

4 = special

W = well

D = distribution

Laboratory Director:

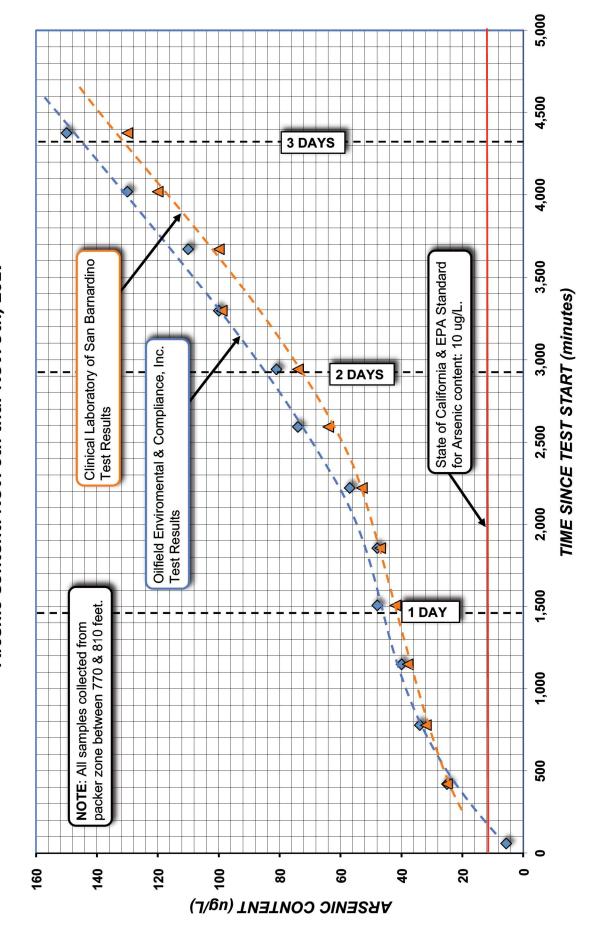
Clinical Laboratory of San Bernardino II GENERAL PHYSICAL REPORT

Certification #1678 516A North 8th Street Lompoc, Ca 93436

Purveyer VANDENBERGYILLAGE CSD Sampler JEFF COLE

Street Address 3757 CONSTITULATION RD LOMPE CA 73436											
Date-Time Sampled 7-13-17 Date-Time submitted to Lab 7-13-17											
D C			Топол	Time	Color	Odor	Turbidity				
Ref	Sample Location	pН	Temp	Time	Color	Odoi	Turblanty				
1	TEST WELL ZONE 5	6.39	68°		,						
2	TEST WELL ZONE 3	6.36	680	=							
3	TEST WELL ZONE!	6.29	690								
4											
5											
6											
7											
8											
9											
10											
11											
12						18 X 1					
13											
14											
15											
16											
17											
18											
19						-					
20				<u></u>							
Date C	completed 7/13/17 1650	Analyst	\$								
Appro	ved Lab Director		Date A	pproved			<u>-</u>				
Analys Ed)	sis are performed in accordance	e with th	ne Standa	ard Meth	ods of W	Vater /Wa					
Relinquished By Jar Coce Company West Date-Time 7:13-17 Recd Time 335											
Reling	uishedByCompany_		Date-	Time	meesteR	ecd Clsa	1 me <u>//2//</u> 7				

TEST PUMPING DATA


Nov. 6 thru Nov. 9, 2017

Vandenberg Village CSD - Fire Station #51 Test Well 770' to 810' Zone Test Data Sheet

Arsenic Content: Nov. 6th thur Nov. 9th, 2017

WELL OWNE	R:				Vandenberg Village CSD						
WELL NAME					Fire Station #51Test Well						
DATE OF TE	ST PUMPIN	G PROCEDURE:	i		Nov. 6th thru Nov. 9, 2017						
DEPTH OF W	VELL:				820 feet						
ZONE TEST	INTERVAL (below packer)			770 to 810 feet						
FLOW RATE DURING TEST 80 to 95 gpr											
TECHNICIAN: Vandenberg Village CSD state											
DATUM POINT: top of casing											
DATE	TIME	TIME SINCE START (min.)	ZONE TEST#	CLINICAL LABORATORY OF SAN BERNARDINO TEST DATA	OILFIELD ENVIRONMENTAL & COMPLIANCE TEST DATA						
				ARSENIC CONTENT (ug/L) parts per billion	ARSENIC CONTENT (ug/L) parts per billion						
11/6/17	8:00 AM	0		no sample	no sample						
11/6/17	9:00 AM	60	1	no sample	5.6						
11/6/17	3:00 PM	420	2	25	25						
11/7/17	8:58 PM	778	3	32	34						
11/7/17	3:07 AM	1147	4	38	40						
11/7/17	9:05 AM	1505	5	42	48						
11/7/17	2:53 PM	1853	6	47	48						
11/8/17	9:00 PM	2220	7	53	57						
11/8/17	3:10 AM	2590	8	64	74						
11/8/17	9:00 AM	2940	9	74	81						
11/8/17	2:55 PM	3295	10	99	100						
11/9/17	9:10 PM	3670	11	100	110						
11/9/17	3:00 AM	4020	12	120	130						
1/0/00	8:56 AM	4376	13	130	150						

Vandenberg Village CSD - Fire Station #51 Test Well 770' to 810' Zone Test Data Graph Arsenic Content: Nov. 6th thur Nov. 9th, 2017

Celebrating 50 Years of Analytical Service 1967-2017

Vandenberg Village CSDProject: RoutineWork Order: 17K09803757 ConstellationSub Project: VVCSD Test WellReceived: 11/10/17 09:07Lompoc CA, 93436Project Manager: Water Quality SupervisorReported: 11/28/17

Test Well 2		17K0980-	01 (Water)		Sample Date: 11/06/17 15:00 Sampler: Jeffrey Cole
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier
Metals Arsenic (As)	SM3113-B	25	2.0	10	ug/L 11/28/17 11/28/17 1748034
Test Well 3		17K0980-	02 (Water)		Sample Date: 11/06/17 20:58 Sampler: Jeffrey Cole
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier
Metals Arsenic (As)	SM3113-B	32	2.0	10	ug/L 11/28/17 11/28/17 1748034
Test Well 4		17K0980-	03 (Water)		Sample Date: 11/07/17 3:04 Sampler: Jeffrey Cole
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier
Metals Arsenic (As)	SM3113-B	38	2.0	10	ug/L 11/28/17 11/28/17 1748034
Test Well 5		17K0980-	04 (Water)		Sample Date: 11/07/17 9:05 Sampler: Jeffrey Cole
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier
Metals Arsenic (As)	SM3113-B	42	2.0	10	ug/L 11/28/17 11/28/17 1748034
Test Well 6		17K0980-	05 (Water)		Sample Date: 11/07/17 14:53 Sampler: Jeffrey Cole
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier
Metals Arsenic (As)	SM3113-B	47	4.0	10	ug/L 11/28/17 11/28/17 1748034
Test Well 7		17K0980-	06 (Water)		Sample Date: 11/07/17 21:00 Sampler: Jeffrey Cole
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier
Metals Arsenic (As)	SM3113-B	53	4.0	10	ug/L 11/28/17 11/28/17 1748034

In no

Gregory Nelson Project Manager

Celebrating 50 Years of Analytical Service 1967-2017

Vandenberg Village CSDProject: RoutineWork Order: 17K09803757 ConstellationSub Project: VVCSD Test WellReceived: 11/10/17 09:07Lompoc CA, 93436Project Manager: Water Quality SupervisorReported: 11/28/17

Test Well 8		17K0980-	07 (Water)		Sample Date: 11/08/17 3:10 Sampler: Jeffrey Cole					
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier					
Metals										
Arsenic (As)	SM3113-B	64	4.0	10	ug/L 11/28/17 11/28/17 1748034					
Test Well 9		17K0980-	08 (Water)		Sample Date: 11/08/17 9:00 Sampler: Jeffrey Cole					
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier					
Metals										
Arsenic (As)	SM3113-B	74	4.0	10	ug/L 11/28/17 11/28/17 1748034					
Test Well 10		17K0980-	09 (Water)		Sample Date: 11/08/17 14:55 Sampler: Jeffrey Cole					
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier					
Metals										
Arsenic (As)	SM3113-B	99	4.0	10	ug/L 11/28/17 11/28/17 1748034					
Test Well 11		17K0980-	10 (Water)		Sample Date: 11/08/17 21:00 Sampler: Jeffrey Cole					
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier					
<u>Metals</u>										
Arsenic (As)	SM3113-B	100	10	10	ug/L 11/28/17 11/28/17 1748034					
Test Well 12		17K0980-	11 (Water)		Sample Date: 11/09/17 3:00 Sampler: Jeffrey Cole					
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier					
<u>Metals</u>										
Arsenic (As)	SM3113-B	120	10	10	ug/L 11/28/17 11/28/17 1748034					
Test Well 13		17K0980-	12 (Water)		Sample Date: 11/09/17 8:56 Sampler: Jeffrey Cole					
Analyte	Method	Result	Rep. Limit	MCL	Units Prepared Analyzed Batch Qualifier					
<u>Metals</u>										
Arsenic (As)	SM3113-B	130	10	10	ug/L 11/28/17 11/28/17 1748034					
ND Analyte NOT DETECTED at or abov	e the reporting li	mit								

In nel-

Gregory Nelson Project Manager

Clinical Lab of San Bernardino, Inc. Chain of Custody wo 21881 Barton Road Grand Terrace CA 92313 909 825-7693 / 516-A N 8th St. Lompoc CA 93436 805 737-7300

1 Clinical Grand Terrace/ELAP 1088 1 Clinical Compor/ELAP 1088 1 Clinical Compor/EST VAPL. 2 1 Clinical Compor/EST VAPL. 3 1 Clinical Compor/EST VAPL. 4 1 Clinical Compor/EST VAPL. 5 1 Clinical Compor/EST VAPL. 5 1 Clinical Compor/EST VAPL. 5 1 Clinical Compor/EST VAPL. 6 1	Client Vannenser Vivale CSD	Destination Laboratory	WedA	Analysis Requested	
Sample Identification In V V V V V V V V V V V V V V V V V V V	7 Constrainmen Ro	I 1 Clinical Grand Terrace / FI 4P 1088		ne de la company	į
Sample Identification In V Sample Identification In V Sample Identification Sample Identification In V In		1 Journal Charle Terrace / LLAF 1080			Tu
1 Other 1 Other 1 Other 2 2 2 2 2 2 2 2 2	15456	[] Clinical Lompoc / ELAP 1678	f		rn
1	GARNER	[] Other:	\ú		A
Sample Identification	2475 FAX NO.: 805 733	ă-	2-54	c	roı
Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Struct 3 Struct 4 Struct 4 Struct 6 Struct 6 Struct 6 Struct 7 Struct 6 Struct 6 Struct 7 Struct 7 Struct 7 Struct 6 Struct 7 Struct 7 Struct 6 Struct 7 Struct 10 Stru	420017	of.	N	Con	ınc
Sample Identification Sample Identification Sample Identification Glass 1 Note 1 Strain St	TEST WELL	Sa	ota	nm	t T
Sample Identification Sample Identification GEST WELL 2 EST WELL 3 EST WELL 4 EST WELL 4 EST WELL 6 EST WELL 7 EST WELL 6 EST WELL 7 EST WELL 6 EST WEL	Then to to	N C Né Na Jnp mp	, ol C	en	ime
Sample Identification Sample Identification Service 2 Est well 2 Est well 3 Est well 4 Est well 6 Est well 6 Est well 6 Est well 7 Est well 7 Est well 7 Est well 6 Est well 7 Est well 7 Est well 7 Est well 7 Est well 8 Est well 9 Est well 9 Est well 6 Est well 9 Est well	C 11.	a2S NaC HC HNC 6H8 NH4 a2S res le 1	ont	<i>ts</i>	? (T
Sample Identification	er II	SOS OH CI OS BOG ICI 20 erv	ain		Αī
EST WELL 2 EST WELL 4 EST WELL 5 EST WELL 5 EST WELL 6 EST WELL 7 EST WELL 18 ES	Time Sample Identification	3 3 /ed	iers		Γ)
EST WELL 3 EST WELL 4 EST WELL 5 EST WELL 6 EST WELL 6 EST WELL 6 EST WELL 7 EST WELL 7 EST WELL 10 I V I V I V EST WELL 10 I V I V I V EST WELL 10 EST WELL 10 I V I V I V EST WELL 10 I V I V I V I V I V I V I V I	1500 TEST WELL				
### 1	2058 TEST WELL		\ <u>\</u>		
EST WELL 5 EST WELL 6 EST WELL 7 EST WELL 7 EST WELL 7 EST WELL 7 EST WELL 12 EST WELL 13 I V V I V V I V V EST WELL 12 EST WELL 12 EST WELL 12 I V V I V V I V V I V V I V V EST WELL 12 EST WELL 12 I V V I V V I V V I V V I V V I V V EST WELL 12 EST WELL 13 I V V I V	Osta Test Were		\ \ 		-
1 1 1 1 1 1 1 1 1 1	0905 TEST WELL		`		_
1	1453 TEST WELL		> -		
SST Well 8	2100		>		
1	6310 TEST WELL		> -		
SST WELL 12 I V SST WELL 13 I V SST W	off Test Well		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
St. Well 12 St. W	1455 Test Were		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
ST WELL 12 ST WELL 12 Water CR. Gammater SW - Surface Water W - Water WW - Wastewater SWR - Stormwater Runoff Soles / Sample Type: 1-Routine 2-Repeat 3-Replacement 4-Special D-Distribution W-Well TAT: y (Sign) Print Name / Company Date / Time Received By (Sign) Print Name / Company Date / Time Received By (Sign) A MAMMACE OCCEST III 19/17 7/55 19/10 4/50 MAMMACE OCCEPT III 19/10 4/50 19/10 4/50 MAMMACE OCCEPT III 19/10 4/50 19/10 4/50 MAMMACE OCCEPT III 19/10 19/10 MAMMACE OCCEPT III 19/1	2100 TEST WELL				
Water GW - Ground Water SW - Surface Water W - Water WW - Wastewater SWR - Stormwater Runoff Stormwater Runoff Stormwater Swr - Stormwater Runoff Stormwater Swr - Stormwater Runoff Storms - Sample Type: 1-Routine 2-Repeat 3-Replacement 4-Special D-Distribution W-Well TAT: V (Sign) Print Name / Company Date / Time Received By (Sign) OCHECOLOURY (Sign) NOT Store (Sign) Not Sto	EXO TEST WELL		<u> </u>		
Water GW - Ground Water SW - Surface Water W - Water WW - Wastewater SWR - Stormwater Runoff Siles / Sample Type: 1-Routine 2-Repeat 3-Replacement 4-Special D-Distribution W-Well TAT: V (Sign) Print Name / Company Date / Time Received By (Sign) OCHE (COLC VVCS) 11-5-17 053-4 MIDDLAG 2000 OM MANDELO (COLC VVCS) 11-5-17 053-4 MIDDLAG 2000 Ompooc Lab Receipt Temp.: 7-0-6 Fed Ex [] Golden State Overnight [] UPS [] OnTrac [] USPS [] Other On Wet Ice TAON Blu Ice [] And Seals Samples / COC Checked By:	11-9-17 CBG6 TEST WELL 13		<u> </u>		
No. M. M. M. M. M. M. Control of the Control of th	Matrix: DW - Drinking Water GW - Ground Water SW - Surface	W - Water WW - Wastewater	- Stormwater Runoff	e O - Other	
y (Sign) Print Name / Company Date / Time Received By (Sign) かんだ (VVCs) パライス のできて (M. MADECA) の (CC 会 女 (1/9/17 ?) また (1/9/17 また (1/9/17 また) また (1/9/17 また) また (1/9/17 また) (1/9/	Use for Bacteria Samples / Sample Type: 1-Routine 2-Repeat 5	olacement 4-Special	W-Well TAT:	(10) Ten Day (5) Five Day Rush (2) Two Day Rush	ısh
DECENTRACE VVSD 119-17 0534 MINALLAN MINALSEN OLSBY 11917 9:55 MINALSEN OLSBY 11917 9:55 MINALSEN ON Wet Ice Thomas I Jubs I		r Date /	(Sig	Print Name / Company	
M.MASEN OLSBY 119/17 9:55 COCChecked By:	WORK JEAKOUC	11-8-17	1	11957	12
om Wet Ice TA On Blu Ice () Intract () It	J Minasced ,	11/9/17	0 44 6		
ompoc Lab Receipt Temp.: 7°C Fed Ex [] Golden State Overnight [] UPS [] OnTrac [] USPS [] Other On Wet Ice 7 (On Blu Ice [) Intact [] Custody Seals Samples / COC Checked By:			Femili Henord	6 J. H. C1515	
ompoc Lab Receipt Temp.:oC Fed Ex _ [] Golden State Overnight _ [] UPS _ [] OnTrac _ [] USPS _ [] Other On Wet Ice _ TA On Blu Ice _ [] Intact _ [] Custody Seals _ Samples / COC Checked By:		`		,)	
On Wet Ice TAOn Blu Ice Intact Custody Seals Samples / COC Checked By:	Lompoc Lab Receipt Temp.: [] Fed Ex [] Golden State Ov	[]UPS []OnTrac	[] Other		
	On Wet Ice TA On Blu Ice	[] Custody Seals	COC Checked By:	Work Order Logged By:	
	- 1			Clinical Lab Receipt Temp.: $\mathcal{O}\mathcal{J}$	ွင

Page of

Mike Garner Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Report: November 7, 2017 13:12 Work Order: 1704078

Project: Well Monitoring
Number: VVCSD Test Well

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on November 06, 2017 09:42 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Elizabeth Minemann, Project Manager

Elizabeth Minemann

eminemann@oecusa.com

California ELAP Certification # 2438 307 Roemer Way, Suite 300, Santa Maria, CA 93454 Client Connect:

client.oec.com\reports

www.oecusa.com

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: Well Monitoring
Project Number: VVCSD Test Well
Project Manager: Mike Garner

Reported: 11/07/2017 13:12

SAMPLE SUMMARY

Sample ID	Laboratory ID	Client Matrix	Lab Matrix	Date Sampled	Date Received
Test Well 1	1704078-01	Water	Water	11/06/17 08:51	11/06/17 09:42

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: Well Monitoring
Project Number: VVCSD Test Well
Project Manager: Mike Garner

Reported: 11/07/2017 13:12

ANALYTICAL REPORT FOR SAMPLES 1704078-01 (Water) Test Well 1

Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	5.6	2.0	ug/L	1	B7K0133	11/06/17	11/06/17	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com

Vandenberg Village CSD Project: Well Monitoring
3757 Constellation Road Project Number: VVCSD Test Well
Lompoc CA, 93436 Project Manager: Mike Garner

Reported: 11/07/2017 13:12

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B7K0133 - EPA 200.8 Prepa	ration: EPA 200.8 11/06/17 1	1:07								
Blank (B7K0133-BLK1)	Analyzed: 11/06/17 16:04									
Arsenic	ND	2.0	ug/L							
LCS (B7K0133-BS1)	Analyzed: 11/06/17 16:07									
Arsenic	133	2.0	ug/L	125		106	85-115			
LCS Dup (B7K0133-BSD1) Analyzed: 11/06/17 16:10										
Arsenic	134	2.0	ug/L	125		107	85-115	1.06	20	
Duplicate (B7K0133-DUP1)	Source: 1704007-01	Analyzed: 11/06/17 16:27								
Arsenic	ND	2.0	ug/L		ND				20	
Matrix Spike (B7K0133-MS1)	Source: 1704007-01		Analyzed: 11/06/17 16:13							
Arsenic	155	2.0	ug/L	125	ND	124	70-130			
Matrix Spike Dup (B7K0133-MSD1)	Source: 1704007-01		Analyzed: 11/06/17 16:15							
Arsenic	143	2.0	ug/L	125	ND	114	70-130	7.83	20	
Post Spike (B7K0133-PS1)	Source: 1704007-01 Analyzed: 11/06/17 16:18									
Arsenic	138		ug/L	125	1.01	109	75-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com

Vandenberg Village CSD Project: Well Monitoring 3757 Constellation Road Project Number: VVCSD Test Well Lompoc CA, 93436 Project Manager: Mike Garner

Reported: 11/07/2017 13:12

Notes and Definitions

RL Reporting Limit (Quantitation Limit)

Analyte NOT DETECTED at or above the reporting limit ND

RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports

TEL: (805) 922-4772 FAX: (805) 925-3376 www.oecusa.com

CHAIN OF CUSTODY

Oilfield Environmental and Compliance

307 Roemer Way Suite 300, Santa Maria, CA 93454 Phone: (805) 922-4772 Fax: (805) 925-3376 www.oecusa.com

101 Adkisson Way, Taft, CA 93268

Phone: (661) 762-9143

Special Instructions: Page 6 of 7 Test Well **Analysis Requested** RECIDE Comments/PO# Project Name/#: VVCS 0 AQ = aqueous DW = drinking water WP = wipe WW = waste water P = product / oil.
PW = product water S = solid / sediment GW = ground.water SW = surface water Matrix Key**:
A = air / vapor Site: ARSENIC ASAP-Fax: 805 733 2109 E-mail: MGAIZ-LIER @ VVCSD. ORG Time: 0942 Time: 0942 NOTE: Samples received after 4:00PM will be considered as received the next busines's day 1 Day-Time: Time: Time: Client Sample ID Time: EDD-Date: 11/06/11 · 2 Days-Date: 11-6-17 TEST WELL Sampler: JEFF COLE Colt/LUFT EDF. Date: Date: Date: Date: 3 Days-ひるひ 93436 Matrix** # of (see key) | Cont. CONSTELLATION RO PDF (std)-5 Days (std)-COMPANY: VANTENBERG VILLAGE **≥**10 U CARNER Date/Time Sampled 11-6-17 FAX-X 10 Days-Lompoc Phone: 805 733 2475 Report To: MIKE Address: 3757 Relinquished By: 🄰 407814 urnaround Time: OEC Sample 10 Report Format(s): Relinquished By: Relinquished By: City/State/ZIP: Received By: Received By: Received By:

Mike Garner Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Report: November 7, 2017 16:37 Work Order: 1704103

Project: Well Monitoring
Number: VVCSD TEST WELL

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on November 07, 2017 09:50 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Elizabeth Minemann, Project Manager

Elizabeth Minemann

eminemann@oecusa.com

California ELAP Certification # 2438 307 Roemer Way, Suite 300, Santa Maria, CA 93454 Client Connect:

client.oec.com\reports

www.oecusa.com

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: Well Monitoring
Project Number: VVCSD TEST WELL
Project Manager: Mike Garner

Reported: 11/07/2017 16:37

SAMPLE SUMMARY

Sample ID	Laboratory ID	Client Matrix	Lab Matrix	Date Sampled	Date Received
TEST WELL 2	1704103-01	Water	Water	11/06/17 15:00	11/07/17 09:50
TEST WELL 3	1704103-02	Water	Water	11/06/17 20:59	11/07/17 09:50
TEST WELL 4	1704103-03	Water	Water	11/07/17 03:04	11/07/17 09:50
TEST WELL 5	1704103-04	Water	Water	11/07/17 09:05	11/07/17 09:50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 934

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: Well Monitoring
Project Number: VVCSD TEST WELL
Project Manager: Mike Garner

Reported: 11/07/2017 16:37

ANALYTICAL REPORT FOR SAMPLES 1704103-01 (Water) TEST WELL 2

			ILSI	WELLZ					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	25	2.0	ug/L	1	B7K0133	11/07/17	11/07/17	EPA 200.8	
		1	704103-	02 (Water)				
			TEST Y	WELL 3					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	34	2.0	ug/L	1	B7K0133	11/07/17	11/07/17	EPA 200.8	
		1	704103-	03 (Water)				
				WELL 4	,				
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	40	2.0	ug/L	1	B7K0133	11/07/17	11/07/17	EPA 200.8	
		1	704103-	04 (Water)				
				WELL 5					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	48	2.0	ug/L	1	B7K0133	11/07/17	11/07/17	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Vandenberg Village CSD

Project: Well Monitoring

3757 Constellation Road

Project Number: VVCSD TEST WELL

Lompoc CA, 93436

Project Manager: Mike Garner

Reported: 11/07/2017 16:37

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B7K0133 - EPA 200.8 Prepa	ration: EPA 200.8 11/06/17 1	1:07								
Blank (B7K0133-BLK1)		Α	nalyzed:	11/06/17	6:04					
Arsenic	ND	2.0	ug/L							
LCS (B7K0133-BS1)		A	nalyzed:	11/06/17	6:07					
Arsenic	133	2.0	ug/L	125		106	85-115			
LCS Dup (B7K0133-BSD1)		A	nalyzed:	11/06/17	6:10					
Arsenic	134	2.0	ug/L	125		107	85-115	1.06	20	
Duplicate (B7K0133-DUP1)	Source: 1704007-01	A	nalyzed:	11/06/17	6:27					
Arsenic	ND	2.0	ug/L		ND				20	
Matrix Spike (B7K0133-MS1)	Source: 1704007-01	A	nalyzed:	11/06/17	6:13					
Arsenic	155	2.0	ug/L	125	ND	124	70-130			
Matrix Spike Dup (B7K0133-MSD1)	Source: 1704007-01	A	nalyzed:	11/06/17	6:15					
Arsenic	143	2.0	ug/L	125	ND	114	70-130	7.83	20	
Post Spike (B7K0133-PS1)	Source: 1704007-01	A	nalyzed:	11/06/17	6:18					
Arsenic	138		ug/L	125	1.01	109	75-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 934

Page 4 of 7

Vandenberg Village CSD

Project: Well Monitoring

3757 Constellation Road

Project Number: VVCSD TEST WELL

Lompoc CA, 93436

Project Manager: Mike Garner

Notes and Definitions

RL Reporting Limit (Quantitation Limit)

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Reported: 11/07/2017 16:37

307 Roemer Way, Suite 300, Santa Maria, CA 934

Page 5 of 7

CHAIN OF CUSTODY

ō

Page

Oilfield Environmental and Compliance

307 Roemer Way Suite 300, Santa Maria, CA 93454 Phone: (805) 922-4772

www.oecusa.com Fax: (805) 925-3376

101 Adkisson Way, Taft, CA 93268

Phone: (661) 762-9143

Special Instructions: Page 6 of 7 TEST WEL **Analysis Requested** RECE Comments/PO# いない Project Name/#: VVCS D Site: SBCO AQ = aqueous DW = drinking water PW = product water S = solid / sediment WP = wipe WW = waste water GW = ground water SW = surface water P = product / oil Matrix Key** A = air / vapor F = filter ARENIC ASAP-0360 Date: 11/07/17 Time: 10954 E-mail: WGABINER @ VVCSD NOTE: Samples received after 4:00PM will be considered as received the next business day 1 Day-X Time: Time: Time: Time: Time: Client Sample ID EDD-2 Days-Date: 11-7-17 M Were 3 をいる N Jepp God WELL があれ Colt/LUFT EDF. Date: Date: Date: Date: 3 Days-TEST Test Test TEST Fax:805733 2109 CVD 93436 Sampler: Address: 3757 CONSTELLATION RD Matrix** # of (see key) Cont. 5 Days (std)-PDF (std)- 🔀 Company: VANDENBERG VILLAGE らか 2 3 かり 11-7-170304 11-7-17 0905 061 11-6-17 103/01/4 11-6-17,500 Date/Time Sampled 10 Days-FAX Phone: 805 733 2475 City/State/ZIP: Lompoc Ø/Ø Report To: (MIKE OEC Sample ID urnaround Time: Report Format(s): Relinquished By: Relinquished By: Relinquished By: Received By: Received By: Received By:

COC RECEIVED DATE/TIME: 11/07/17

SAMPLE TRANSPORT

CLIENT: VANDEN BERG VILLAGE CSP

WORK ORDER: 170071

LOGIN DATEITIME: 11/07/17

04,60

☐ Samples Received on Ice Within Temperature Range [Acceptable]

☐ Samples Received Outside Temperature Range (Acceptable)

Samples Received Outside Temperature Range [Exception] v ☐ Sample Temperature Acceptable for Analysis Requested

Excessive Free Liquid in Sample Bags or Cooler X insufficient loe or thrinown cause

Cooler(s):

Present, Intact

Present, Not Intact

None Sample(s):

☐ Present, Infact ☐ Present, Not Infact ☐ None

None Present

CUSTODY SEALS

Tracking #: ☐ Shipment

C Received Ambient, Placed on Ice for Transport

☐ Ambient: Air or Filter Matrix Direct from Field, on Ice

☐ After-Hours Outside Drop-Off [Brought Inside]

hitials/Date/Time:

Delivery (Other than OEC) OEC Courier/Sampler

Carrier.

SAMPLE RECEIPT, CONDITION, PRESERVATION

TEMPERATURE: 12

SAMPLE RECEIPT

TEMPERATURE: "- / "C
Acceptable Range: 0"C to 6"C (see exception notes below)

(**) OEC PRES. ID " See Comments below or Problem Chain REFRIGERATOR(S): 🕭 7 . . > ☐ * OR ☐ ↓(comments) Expedited PM Notification [Inil/Date/Time]: Completed COC(s) Received With Samples Correct Container(s)/Preserve for Analysis Container(s) Intact and in Good Condition Sample Quantity Sufficient & Appropriate Container Label(s) Consistent with COC (*) PROBLEM CHAIN REQUIRED VOA Containers Free of Headspace Tedlar Bag(s) Free of Condensation OEC Preservation Added **

				_		_				,	_		_		_	
9	INITIALS	e .								4			,			Proceedings were
					8	·								•		
	COMMENTS									*		2				
						6								10×10×10×10×10×10×10×10×10×10×10×10×10×1		
	MATRIX	7						ï								
	CHECKS: CI', S' &/or pH	PH 22	**						,							
	PRESERVATIVE	HWO3														
CONTAINERS, COC CHANGES, AND/OR CORRECTIONS	CONTAINER DESCRIPTION	0-044 1-250ml Pour														
CONTAINERS, (OEC CONTAINER ID	D-044								00000						

RECEIPT LOGIN BY:

RECEIPT REVIEWED BY:

Mike Garner Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Report: November 9, 2017 11:06 Work Order: 1704129

Project: Well Monitoring

Number: VVCSD TEST WELL - SBCO STA51

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on November 08, 2017 09:47 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Meredith Sprister, Project Manager

Mendithe Shister

msprister@oecusa.com

California ELAP Certification # 2438 307 Roemer Way, Suite 300, Santa Maria, CA 93454 Client Connect:

client.oec.com\reports

www.oecusa.com

TEL: (805) 922-4772

FAX: (805) 925-3376

Vandenberg Village CSD Project: Well Monitoring

3757 Constellation RoadProject Number: VVCSD TEST WELL - SBCO STA51Reported:Lompoc CA, 93436Project Manager: Mike Garner11/09/2017 11:06

SAMPLE SUMMARY

Sample ID	Laboratory ID	Client Matrix	Lab Matrix	Date Sampled	Date Received
TEST WELL 6	1704129-01	Water	Water	11/07/17 14:53	11/08/17 09:47
TEST WELL 7	1704129-02	Water	Water	11/07/17 21:00	11/08/17 09:47
TEST WELL 8	1704129-03	Water	Water	11/08/17 03:10	11/08/17 09:47
TEST WELL 9	1704129-04	Water	Water	11/08/17 09:00	11/08/17 09:47

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Vandenberg Village CSD

Project: Well Monitoring

3757 Constellation Road Lompoc CA, 93436 Project Number: VVCSD TEST WELL - SBCO STA51
Project Manager: Mike Garner

Reported: 11/09/2017 11:06

ANALYTICAL REPORT FOR SAMPLES 1704129-01 (Water) TEST WELL 6

			IESI	WELLO					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	48	2.0	ug/L	1	B7K0219	11/08/17	11/08/17	EPA 200.8	
		1	704129-	02 (Water	·)				
			TEST	WELL 7					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	57	2.0	ug/L	1	B7K0219	11/08/17	11/08/17	EPA 200.8	
		1	704129-	03 (Water)				
				WELL 8	,				
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	74	2.0	ug/L	1	B7K0219	11/08/17	11/08/17	EPA 200.8	
		1	704129-	04 (Water	·)				
			TEST Y	WELL 9					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	81	2.0	ug/L	1	B7K0219	11/08/17	11/08/17	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Vandenberg Village CSD Project: Well Monitoring

3757 Constellation RoadProject Number: VVCSD TEST WELL - SBCO STA51Reported:Lompoc CA, 93436Project Manager: Mike Garner11/09/2017 11:06

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B7K0219 - EPA 200.8 Prepa	aration: EPA 200.8 11/08/17	10:40								
Blank (B7K0219-BLK1)		A	Analyzed:	11/08/17	16:29					
Arsenic	ND	2.0	ug/L							
LCS (B7K0219-BS1) Arsenic	140	2.0		11/08/17 1 125	16:36	112	85-115			
LCS Dup (B7K0219-BSD1)	110		C	11/08/17	16:38	112	05 115			
Arsenic Assenic	125	2.0	ug/L	125	10.36	100	85-115	11.1	20	
Duplicate (B7K0219-DUP1)	Source: 1704099-01	F	Analyzed:	11/08/17	17:05					
Arsenic	ND	2.0	ug/L		ND				20	
Matrix Spike (B7K0219-MS1)	Source: 1704099-01	A	Analyzed:	11/08/17	16:40					
Arsenic	138	2.0	ug/L	125	ND	110	70-130			
Matrix Spike Dup (B7K0219-MSD1)	Source: 1704099-01	A	Analyzed:	11/08/17	16:42					
Arsenic	137	2.0	ug/L	125	ND	109	70-130	0.921	20	
Post Spike (B7K0219-PS1)	Source: 1704099-01	A	Analyzed:	11/08/17	16:45					
Arsenic	127		ug/L	125	1.48	100	75-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com

orts TEL: (805) 922-4772 om FAX: (805) 925-3376

Vandenberg Village CSD Project: Well Monitoring

3757 Constellation Road Project Number: VVCSD TEST WELL - SBCO STA51 Reported:
Lompoc CA, 93436 Project Manager: Mike Garner 11/09/2017 11:06

Notes and Definitions

RL Reporting Limit (Quantitation Limit)

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 934

CHAIN OF CUSTODY

Oilfield Environmental and Compliance

307 Roemer Way Suite 300, Santa Maria, CA 93454

Phone: (805) 922-4772 Fax: (805) 925-3376 www.oecusa.com

101 Adkisson Way, Taft, CA 93268

Phone: (661) 762-9143

Page

Rev. 09/23/2014 Special Instructions: Project Name#: NVCSD TEST WELL JEC @ 10.7°C Analysis Requested のするの Comments/PO# かあら AQ = aqueous DW = drinking water PW = product water S = solid / sediment SW = surface water GW = ground water WW = waste water P = product / oil Matrix Key**: A = air / vapor WP = wipe F = filter Site: 7 ARSENIC ASAP-E-mail: WEAR NER @VVCSD. ORE 108117 Time: 6947 Time: 0547 NOTE: Samples received after 4:00PM will be considered as received the next business day 1 Day-X Time: Time: Time: Time: Client Sample ID EDD-2 Daysσ TEST WELL 6 Date: // NAT NATIONAL PROPERTY NATIONAL TEST KELL JOHN COLE TEST WELL Colf/LUFT EDF. Date: Date: Date: Date: 3 Days-TEST CSD Fax: 805 733 2109 93436 Sampler: Address: 3757 CONSTELLATION RD. 5 Days (std)-# of (see key) | Cont. PDF (std)- 🔀 Company: VANDENBERG VILLAGE Matrix** 30 3 S Ž Š S D 11-8-17 11.7-17 11-7-17483 0000 11-8-17 Report To: MIKE GARNER Date/Time Sampled 10 Days- [City/State/ZIP: Lornpoc FAX-Phone: 805 733 2475 TIME? WIA OEC Sample ID urnaround Time: Report Format(s): Relinquished By: Relinguished By: Relinquished By: Received By: Received By: Received By:

650 CLIENT: VANDENBELS VILLAGE CSD

WORK ORDER: 1764129

TEMPERATURE: 19. C SAMPLE RECEIPT
Acceptable Range: 0°C to 6°C [see exception notes below]

	COC RECEIVED DATEITIME: 11/08/17	2	13.60	LOGIN DATE/TIME	LOGIN DATEITIME: 11/188/17	7:01	REFRIGERATOR(S): (B)	
SAMPLE TRANSPORT	SPORT	SAMPLER	SAMPLE RECEIPT, CONDITION, PRESERVATION	ITION, PRESI	ERVATION	(*) PROBLEM CHAIN REQUIRED	YES NO NIA . (*	(**) OEC PRES. ID
☐ OEC Courier/Sampler	pler	☐ Samples R	☐ Samples Received on Ice Within Temperature Range [Acceptable]	in Temperature Rai	nge [Acceptable]	Completed COC(s) Received With Samples		× (8)
Delivery (Other than OEC)	an OEC)	☐ Samples R	☐ Samples Received Outside Temperature Range [Acceptable]	nperature Range [/	Acceptable]	Correct Container(s)/Preserve for Analysis		ž.
☐ After-Hours Outsit	🗖 After-Hours Outside Drop-Off [Brought Inside]	Direct	from Field, on Ice	ar.		Container(s) Intact and in Good Condition	*	ia N
Initials/Date/Time:		□ Ambie	☐ Ambient: Air or Filter Matrix	*		Container Label(s) Consistent with COC	- - - - -	100
☐ Shipment	Carrier	☐ Recei	☐ Received Ambient, Placed on Ice for Transport	on Ice for Transpo	· t	OEC Preservation Added **	X	
Tracking #:		dues 🔲	☐ Sample Temperature Acceptable for Analysis Requested	eptable for Analysis	Requested	Sample Quantity Sufficient & Appropriate	□ [*]	
CUSTODY SEALS	S None Present	Samples R	Samples Received Outside Temperature Range [Exception] V	nperature Rangé [E	Exception] V	VOA Containers Free of Headspace	V V See	W. See Comments below or Problem Chain
Cooler(s):	Cooler(s): Present, Intact Present, Not Intact None	Jusuff Insuff	Insufficient Ice or Unknown Saus	1 Sause		Tedlar Bag(s) Free of Condensation	☆	æ
Sample(s): 🔲 Preser	Sample(s): Present, Intact Present, Not Intact None	☐ Excessive	☐ Excessive Free Liquid in Sample Bags or Cooler	le Bags or Cooler	·	☐ * ок ☐ ↓(солме́ть) Expedited PM Notification [Init/Date/Time]:	n [Init/Date/Time]:	
CONTAINERS, (CONTAINERS, COC CHANGES, AND/OR CORRECTIONS	CTIONS						
OEC CONTAINER ID	CONTAINER DESCRIPTION	.;	PRESERVATIVE	CHECKS: CI', S' &/or pH	MATRIX	COMMENTS	S	INITIALS
B1-044	+125 # 1-250ml Parts	Porte	HWO3	PH 62	3	(දී)		
			© 1997	14			e e	20
2	000 and 000 000 000 000 000 000 000 000 000 0						A CONTRACTOR AND A CONT	
٠	\$ S	8				(Alberta) Ad	e Same Comment	
so sort		,,	4	v	*	M.		2
							-	
Annual Control						*		NAME OF THE PROPERTY OF THE PR
								Windows is a second way of a declaration of the second of
2 2 2 3 3 4 3 3 4 3 3 4 3 4 3 3 4 3 4 3	the section of the se	4						

RECEIPT LOGIN BY:

RECEIPT REVIEWED BY:

Mike Garner Vandenberg Village CSD 3757 Constellation Road Lompoc, CA 93436

Report: November 10, 2017 13:58 Work Order: 1704160

Project: Well Monitoring

Number: VVCSD TESTWELL - SBCO STA51

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on November 09, 2017 10:35 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Meredith Sprister, Project Manager

Wendith & Shister

msprister@oecusa.com

Vandenberg Village CSD Project: Well Monitoring

3757 Constellation RoadProject Number: VVCSD TESTWELL - SBCO STA51Reported:Lompoc CA, 93436Project Manager: Mike Garner11/10/2017 13:58

SAMPLE SUMMARY

Sample ID	Laboratory ID	Client Matrix	Lab Matrix	Date Sampled	Date Received
TEST WELL 10	1704160-01	Water	Water	11/08/17 14:55	11/09/17 10:35
TEST WELL 11	1704160-02	Water	Water	11/08/17 21:00	11/09/17 10:35
TEST WELL 12	1704160-03	Water	Water	11/09/17 03:00	11/09/17 10:35
TEST WELL 13	1704160-04	Water	Water	11/09/17 08:56	11/09/17 10:35

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 934

Page 2 of 5

Vandenberg Village CSD

Project: Well Monitoring

3757 Constellation Road Lompoc CA, 93436

Project Number: VVCSD TESTWELL - SBCO STA51 Reported:
Project Manager: Mike Garner 11/10/2017 13:58

ANALYTICAL REPORT FOR SAMPLES 1704160-01 (Water) TEST WELL 10

			IESI V	VELL IU					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	100	2.0	ug/L	1	B7K0257	11/09/17	11/09/17	EPA 200.8	
		1	704160-	02 (Water	·)				
			TEST V	VELL 11					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	110	2.0	ug/L	1	B7K0257	11/09/17	11/09/17	EPA 200.8	
		1	704160-	03 (Water	·)				
				VELL 12	•				
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	130	2.0	ug/L	1	B7K0257	11/09/17	11/09/17	EPA 200.8	
		1	704160-	04 (Water	.)				
				VELL 13					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	150	2.0	ug/L	1	B7K0257	11/09/17	11/09/17	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Vandenberg Village CSD Project: Well Monitoring

3757 Constellation RoadProject Number: VVCSD TESTWELL - SBCO STA51Reported:Lompoc CA, 93436Project Manager: Mike Garner11/10/2017 13:58

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B7K0257 - EPA 200.8	Preparation: EPA 200.8 11/09/17 1	1:07								
Blank (B7K0257-BLK1) Arsenic	ND	2.0	Analyzed: ug/L	11/09/17	13:58					
LCS (B7K0257-BS1) Arsenic	116	2.0	Analyzed: ug/L	11/09/17 125	14:00	92.8	85-115			
LCS Dup (B7K0257-BSD1) Arsenic	123	2.0	Analyzed: ug/L	11/09/17	14:03	98.0	85-115	5.42	20	
Duplicate (B7K0257-DUP1) Arsenic	Source: 1704160-01 107	2.0	Analyzed: ug/L	11/09/17	14:16 102			5.11	20	
Matrix Spike (B7K0257-MS1) Arsenic	Source: 1704160-01 256	2.0	Analyzed: ug/L	11/09/17	14:05 102	124	70-130			
Post Spike (B7K0257-PS1) Arsenic	Source: 1704160-01	A	Analyzed:	11/09/17	14:09 101	122	75-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect: client.oec.

client.oec.com\reports TEL: (805) 922-4772 www.oecusa.com FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 934

Vandenberg Village CSD Project: Well Monitoring

3757 Constellation RoadProject Number: VVCSD TESTWELL - SBCO STA51Reported:Lompoc CA, 93436Project Manager: Mike Garner11/10/2017 13:58

Notes and Definitions

RL Reporting Limit (Quantitation Limit)

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 934

CHAIN OF CUSTODY

Oilfield Environmental and Compliance

	af
1	1
	E
	ਰ
9	ပ
	ū
	9
	ਹ
	9
	: <u>:</u>
	٤
	٤
- 12	5
4	
3	
٠,	3
V	3
C	ů.
re i	123
·Ξ	Ö
a	-
2	8
G	∞ _.
Έ	_
a	×
S	<u>.</u> 6
Õ	ш
0	
(c.)	~.
프	17
3	1
S	4
>	2
Ca	6
5	-
2	55
2	∞.
둢	$\overline{}$
ŏ	ä
8	Ĕ
!	2
8	Ď.
307 Roemer Way Suite 300, Santa Maria, CA 93454	Phone: (805) 922-4772 Fax: (805) 925-3376 www.oecusa.com

101 Adkisson Way, Taft, CA 93268

Phone: (661) 762-9143

Special Instructions: もろうとの REC 14.7°C **Analysis Requested** STAB Comments/PO#: Project Name/#: VVC5 D りないの AQ = aqueous DW = drinking water GW = ground water Matrix Key**:
A = air / vapor = filter Site: ARSENIC 1 Day- 🕶 🤼 🖈 ASAP-Date: 11-9-17 Time: 456 1035 Fax: 805 733 2109 E-mail: MGARNER QWCSD: ORG Date: 11/09/17 Time: 1035 NOTE: Samples received after 4:00PM will be considered as received the next business day Client Sample ID EDD-2 Days-TEST WELL 12 1 rest Wer 10 TEST WELL !! JET COLE Colt/LUFT EDF-TEST WELL Date: のいり 3 Days-Address: 3757 CONSTELLATION RD. 93436 Sampler: Company: VANDELBEKE VILLAGE Matrix** # of (see key) Cont. 5 Days (std)-PDF (std)- 2 **d**≥ 3 03 11-9-17 6W CAN HELTOGEN GW 4 et 11.8.17 Date/Time Sampled 704KD dA 11-8-17455 Report To: MIKE GARLIER 10 Days-City/State/ZIP: LOWPEC Phone: 805733 2475 OEC Sample 1D urnaround Time: Report Format(s): Relinquished By: Relinquished By: Received By:

Rev. 09/23/2014

SW = surface water WP = wipe

Time: Time:

Date:

Relinquished By:

Received By:

Received By:

Date:

Time:

Date:

WW = waste water

P = product / oil
PW = product water S = solid / sediment

CLIENT:	COC RECEIVE
ರ	S

WORK ORDER: 170 4160

TEMPERATURE: 4/2

SAMPLE RECEIPT

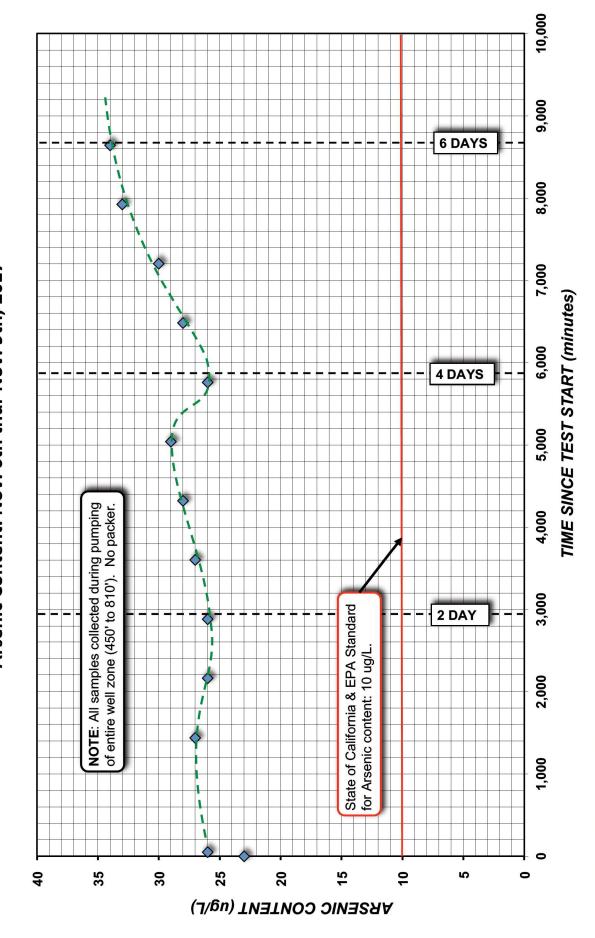
ပ္

	(**) OEC PRES. ID					,	W See Comments below or Problem Chain			INITIALS						e e						Rev. 08/09/201
6							Y See Com	M .						÷ .	· *							
REFRIGERATOR(S):	YES NO	J Z	X	 X	X		> -	[Init/Date/Time]		6												
Acceptable Kange, u.C.to c.C. See e	(*) PROBLEM CHAIN REQUIRED Commissed Office) Received With Samples	Correct Container(s)/Preserve for Analysis	Container(s) Intact and in Good Condition	Container Label(s) Consistent with COC	OEC Preservation Added **	Sample Quantity Sufficient & Appropriate	VOA Containers Free of Headspace	Tedlar Bag(s) Free of Condensation ☐ ☐ V ☐ V OR ☐ ↓ OR ☐ ↓ Community Expedited PM Notification [Init/Date/Time]		COMMENTS	(8)								emere amenicalizational among marks among a am amings at an among the production of a second second among a second	¥		4
LOGIN DATEITIME: 11/09/1/7	ERVATION one (Accentable)	Sceptable]			ŧ	Requested	xception] V	.,.		MATRIX	3						×					
LOGIN DATEITIME	ITION, PRESI	Outside Temperature Range [Acceptable]	1		on Ice for Transpo	ptable for Analysis	perature Range [E	Bags or Cooler	a a	CHECKS: CI', S' &/or pH	PH 12		Q.									×
(63.5	SAMPLE RECEIPT, CONDITION, PRESERVATION	Recommendation Ten	A Koli Fishi	☐ Ambient: Air or Filter Matrix	☐ Received Ambient, Placed on Ice for Transport	Sample Temperature Acceptable for Analysis Requested	Samples Received Outside Temperature Range [Exception] V	Insufficient Ice— Comment Comm		PRESERVATIVE	HWG											,
117	SAMPLE	X Samples A	本	□ ₩	□ Rg	Sar	Samples	T Insu	ECTIONS	NO	. 4											;
COC RECEIVED DATE/TIME: 11/09/17	SPORT Inler	an OEC)	After-Hours Outside Drop-Off [Brought Inside]		Carrier.		S X None Present	Cooler(s): Present, Inlact Present, Not Intact None Sample(s): Present, Inlact Present, Not Intact None	CONTAINERS, COC CHANGES, AND/OR CORRECTIONS	CONTAINER DESCRIPTION	1-250mi Pour E	ć				g.					-	
	SAMPLE TRANSPORT	Delivery (Other than OEC)	☐ Affer-Hours Outsit	initials/Date/Time:	☐ Shipment	Tracking #:	CUSTODY SEALS	Cooler(s): ☐ Preser Sample(s): ☐ Presen	CONTAINERS, C	OEC CONTAINER ID	BI-OUA							***************************************				

RECEIPT LOGIN BY:

RECEIPT REVIEWED BY:

TEST PUMPING DATA


Jan. 3 thru Jan. 9, 2018

Vandenberg Village CSD - Fire Station #51 Test Well Entire Well (450' to 810') Zone Test for Arsenic Content: Jan 3rd thur Jan 9th, 2018

WELL OWNER:	Vandenberg Village CSD
WELL NAME:	Fire Station #51 Test Well
DATE OF TEST PUMPING PROCEDURE:	Jan 3rd - Jan 9th Entire Well Test (450' - 810')
DEPTH OF WELL:	820 feet
DEPTH OF PUMP SETTING:	10 horsepower pump set at 385 feet
PACKER INTERVAL:	none
FLOW RATE DURING 3 DAY TEST:	85 to 95 gpm
TECHNICIAN:	Vandenberg Village CSD staff
DATUM POINT:	top of casing

DATE	TIME	TIME SINCE START (min.)	ZONE TEST #	ARSENIC CONTENT ug/L (parts per billion)
1/3/18	8:00 AM	0	1	23
1/3/18	8:51 AM	51	2	26
1/4/18	8:00 AM	1440	3	27
1/4/18	8:00 PM	2160	4	26
1/5/18	8:00 AM	2880	5	26
1/5/18	8:00 PM	3600	6	27
1/6/18	8:00 AM	4320	7	28
1/6/18	8:00 PM	5040	8	29
1/7/18	8:00 AM	5760	9	26
1/7/18	8:00 PM	6480	10	28
1/8/18	8:00 AM	7200	11	30
1/8/18	8:00 PM	7920	12	33
1/9/18	8:00 AM	8640	13	34

Vandenberg Village CSD - Fire Station #51 Test Well Entire Well (450' to 810') Zone Test Graph:
Arsenic Content: Nov. 6th thur Nov. 9th, 2017

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: VVCSD Test Well
Project Number: SBCO STA 51
Project Manager: Mike Garner

Reported:

01/08/2018 09:22

ANALYTICAL REPORT FOR SAMPLES 1800260-01 (Water)

		1	800260-	01 (Water)				
1/3/18	8 am		1-	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	23	2.0	ug/L	Ī	B8A0083	01/04/18	01/05/18	EPA 200.8	
		1	800260-	02 (Water)				
1/3/18 80	ing		2-	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	26	2.0	ug/L	1	B8A0083	01/04/18	01/05/18	EPA 200.8	
		1	<mark>800260</mark> -	03 (Water)				
1/4/18 8 am			3-	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	27	2.0	ug/L	1	B8A0083	01/04/18	01/05/18	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: VVCSD Test Well Project Number: SBCO STA 51 Project Manager: Mike Garner

Reported: 01/08/2018 09:15

ANALYTICAL REPORT FOR SAMPLES 1800271-01 (Water)

The second second		1	800271-	01 (Water)				
1/4/18 8,	OM		4-3	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Metho	ds								
Arsenic	26	2.0	ug/L	Ĭ	B8A0083	01/05/18	01/05/18	EPA 200.8	
. 5 16/1		1	800271-	02 (Water)				
1/5/18 8 am			5-3	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Metho	ds								
Arsenic	26	2.0	ug/L	1	B8A0083	01/05/18	01/05/18	EPA 200.8	

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436 Project: VVCSD Test Well Project Number: SBCO STA 51 Project Manager: Mike Garner

Reported:

01/09/2018 08:59

ANALYTICAL REPORT FOR SAMPLES 1800283-01 (Water)

	_			01 (Water)	~			
1/5/18	8 pm		6	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	27	2.0	ug/L	1	B8A0130	01/08/18	01/08/18	EPA 200.8	
1/6/18 8	qm	1		02 (Water)				
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Mo	ethods								
Arsenic	28	2.0	ug/L	1	B8A0130	01/08/18	01/08/18	EPA 200.8	
ale to a		1	800283-	03 (Water)				
1/6/18 8 pm	1		8	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	29	2.0	ug/L	1	B8A0130	01/08/18	01/08/18	EPA 200.8	
1/7/18 8 am		1		04 (Water 385)				
Analyle	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	26	2.0	ug/L	1	B8A0130	01/08/18	01/08/18	EPA 200.8	
		1		05 (Water)				
1/7/18 80	m		10-	385					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								
Arsenic	_28	2.0	ug/L	1	B8A0130	01/08/18	01/08/18	EPA 200.8	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 934

Client Connect:

client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436

Project: VVCSD Test Well Project Number: SBCO STA 51

Project Manager: Mike Garner

Reported:

01/09/2018 08:59

1800283-06 (Water)

1/	8/	18	8	em

11-385

1/8/10	8 am		11.	-303					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Me	ethods								,
Arsenic	30	2.0	ug/L	1	B8A0130	01/08/18	01/08/18	EPA 200.8	

B8A0175

01/09/18

01/10/18

EPA 200.8

Vandenberg Village CSD 3757 Constellation Road Lompoc CA, 93436

Metals by EPA 200 Series Methods

Arsenic

Project: VVCSD Test Well Project Number: SBCO STA 51 Project Manager: Mike Garner

Reported: 01/10/2018 15:54

ANALYTICAL REPORT FOR SAMPLES

1/8/18 8pm		1		01 (Water -385)				
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Metals by EPA 200 Series Methods									
Arsenic	33	2.0	ug/L	T.	B8A0175	01/09/18	01/10/18	EPA 200.8	
1/9/18 8am		1		02 (Water -385)				
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

2.0

ug/L